
MATRIXx TM

XmathTM Interactive System 
Identification Module, Part 1

Xmath Interactive System Identification Module, Part 1

April 2004 Edition
Part Number 370758B-01



Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599, 
Canada (Calgary) 403 274 9391, Canada (Ottawa) 613 233 5949, Canada (Québec) 450 510 3055, 
Canada (Toronto) 905 785 0085, Canada (Vancouver) 514 685 7530, China 86 21 6555 7838, 
Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 385 0 9 725 725 11, 
France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, Greece 30 2 10 42 96 427, India 91 80 51190000, 
Israel 972 0 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970, Korea 82 02 3451 3400, 
Malaysia 603 9131 0918, Mexico 001 800 010 0793, Netherlands 31 0 348 433 466, 
New Zealand 0800 553 322, Norway 47 0 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210, 
Russia 7 095 783 68 51, Singapore 65 6226 5886, Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197, 
Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51, Taiwan 886 2 2528 7227, 
Thailand 662 992 7519, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment 
on the documentation, send email to techpubs@ni.com.

© 2000–2004 National Instruments Corporation. All rights reserved.



 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects 
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National 
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives 
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be 
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before 
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are 
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical 
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent 
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. 
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF 
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR 
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY 
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including 
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments 
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover 
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or 
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, 
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying, 
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National 
Instruments Corporation.

Trademarks
MATRIXx™, National Instruments™, NI™, ni.com™, SystemBuild™, and Xmath™ are trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file 
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF 
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN 
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT 
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE 
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY, 
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS 
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND 
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL 
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR 
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE 
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD 
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD 
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID 
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO 
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. 
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING 
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN 
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL 
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING 
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE 
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN, 
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.



Conventions

The following conventions are used in this manual:

» The » symbol leads you through nested menu items and dialog box options 
to a final action. The sequence File»Page Setup»Options directs you to 
pull down the File menu, select the Page Setup item, and select Options 
from the last dialog box.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to 
avoid injury, data loss, or a system crash.

bold Bold text denotes items that you must select or click in the software, such 
as menu items and dialog box options. Bold text also denotes parameter 
names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction 
to a key concept. This font also denotes text that is a placeholder for a word 
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the 
keyboard, sections of code, programming examples, and syntax examples. 
This font is also used for the proper names of disk drives, paths, directories, 
programs, subprograms, subroutines, device names, functions, operations, 
variables, filenames, and extensions.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value 
that you must supply.

monospace bold Bold text in this font denotes the messages and responses that the computer 
automatically prints to the screen. This font also emphasizes lines of code 
that are different from the other examples.



© National Instruments Corporation v Xmath Interactive System Identification Module, Part 1

Contents

Chapter 1
Introduction

Using This Manual.........................................................................................................1-1
Document Organization...................................................................................1-1
How to Use This Manual.................................................................................1-2
Commonly-Used Nomenclature......................................................................1-3
Related Publications ........................................................................................1-3
MATRIXx Help...............................................................................................1-4
Overview .........................................................................................................1-4
Function Categories.........................................................................................1-4
Graphical User Interface..................................................................................1-9

Chapter 2
Identification Process

System Identification .....................................................................................................2-1
Loading and Preprocessing Data ...................................................................................2-2
Choosing a Modeling and Identification Scheme..........................................................2-4

Model Structures .............................................................................................2-5
Incorporating Prior Knowledge.......................................................................2-10
Identification/Selection of ID Approach .........................................................2-11
Using Intermediate Results..............................................................................2-14

Model Validation ...........................................................................................................2-14
Identification Function Feature Summary .....................................................................2-15

Chapter 3
Identification Algorithms

Least-Squares in the Time Domain ...............................................................................3-1
Least Squares for ARX Models.......................................................................3-1
LS Square Root................................................................................................3-2
Singular Value-Based Solutions......................................................................3-3
Least Squares with Scalar Denominator .........................................................3-4
Fast Least Squares with a Lattice Algorithm ..................................................3-4

Generalized Instrumental Variables...............................................................................3-5
Spectral Density Function Estimation ...........................................................................3-6

Remarks on the Implementation of SDF.........................................................3-8
Empirical Transfer Function Estimation........................................................................3-9

Identification from Impulse Response Data ....................................................3-10
Remarks...........................................................................................................3-13



Contents

Xmath Interactive System Identification Module, Part 1 vi ni.com

Least Squares-Frequency Domain................................................................................. 3-13
Prediction Error Methods .............................................................................................. 3-15

Estimation Algorithm...................................................................................... 3-15
Specialized Model Structures.......................................................................... 3-17

Subspace Identification Methods .................................................................................. 3-17
Combined Deterministic-Stochastic Systems ................................................. 3-18

Determining the Observability Matrix and the Order....................... 3-20
Dependent Scaling ............................................................................ 3-20
Independent Scaling ......................................................................... 3-21
Determining the State-Space System ............................................... 3-21

Biased State-Space System Determination Method........................................ 3-22
Subspace Identification of Stochastic Systems............................................... 3-23

Determining the Observability Matrix and the Order....................... 3-25
Determining the State-Space System for SST.................................. 3-25

Maximum Likelihood Method ...................................................................................... 3-26

Chapter 4
Tutorial

Preparing to Use This Tutorial ...................................................................................... 4-1
Tutorial Data.................................................................................................................. 4-2
Graphical User Interface................................................................................................ 4-3

Structure and Concept of the GUI................................................................... 4-4
General Features of ISID Interactive Tools .................................................... 4-4

Menus ............................................................................................... 4-5
Modeling and Validation Selections................................................. 4-8

Graphics Utilities for GUI Tools .................................................................... 4-9
Least-Squares in the Time Domain ............................................................................... 4-10

Interactive LS Tool ......................................................................................... 4-11
Filtering........................................................................................................... 4-16
Square Root Based Cross Validation .............................................................. 4-18
Model Uncertainty Estimates.......................................................................... 4-20
Combining Data Sets with lsjoin .................................................................... 4-21
SVD-Based Solutions ..................................................................................... 4-22
Least Squares with Scalar Denominator ......................................................... 4-22
Lattice-Based Least Squares ........................................................................... 4-23

Subspace Identification of Deterministic-Stochastic Systems ...................................... 4-24
Subspace Identification of Stochastic Systems ............................................................. 4-36
Prediction Error Method................................................................................................ 4-40

Model Structures ............................................................................................. 4-40
Example .......................................................................................................... 4-42

Maximum Likelihood Method ...................................................................................... 4-47
Generalized Instrumental Variables .............................................................................. 4-50
Signal Analysis .............................................................................................................. 4-52



Contents

© National Instruments Corporation vii Xmath Interactive System Identification Module, Part 1

Empirical Transfer Function Estimation........................................................................4-58
Impulse Realization .......................................................................................................4-63
Least Squares in the Frequency Domain .......................................................................4-66
SISO Transfer Function Identification from Frequency Response Data .......................4-70
Validation.......................................................................................................................4-72

Innovations Models .........................................................................................4-72
Computing Prediction Errors...........................................................................4-72
Signal Analysis................................................................................................4-73
Stochastic Properties of Innovations Models ..................................................4-73
Model Uncertainty Estimates ..........................................................................4-73
Least Squares Prediction Error Norms ............................................................4-74
Pole/Zero Inspection........................................................................................4-74
Interactive Validation Tool..............................................................................4-74
Guidelines........................................................................................................4-75

Input Design...................................................................................................................4-76

Appendix A
List Data Structures

Appendix B
Loading Data with the read( ) Function

Appendix C
Tool-Specific GUI Features

Appendix D
Bibliography

Appendix E
Technical Support and Professional Services

Index



© National Instruments Corporation 1-1 Xmath Interactive System Identification Module, Part 1

1
Introduction

This chapter provides an outline of the manual, some use notes, and an 
overview of the Xmath Interactive System Identification Module. The 
overview includes a complete listing of the ISID functions, grouped 
according to their use. The final section of the chapter briefly describes how 
ISID applies Xmath’s interactive graphical user interface (GUI) to the 
complete identification process.

Using This Manual
The goal of this manual is to explain the general steps of the system 
identification process, and to show how ISID interactive tools and 
functions simplify and streamline this process. It defines the mathematics 
of system identification problems and provides step-by-step examples of 
problem solving sessions.

Document Organization
This manual includes the following chapters and appendices:

• Chapter 1, Introduction, provides an overview of the contents of this 
manual and pinpoints the sections that will be of most use to both 
first-time and long-term ISID users. It provides a complete listing of 
the ISID functions, grouped according to their use. This chapter also 
describes how ISID applies Xmath’s interactive graphical user 
interface (GUI) to the complete identification process.

• Chapter 2, Identification Process, is a general primer on system 
identification. It describes how Xmath and ISID functions fit into the 
framework of system identification. It provides general guidelines to 
help select the most appropriate identification approach for a particular 
problem.

• Chapter 3, Identification Algorithms, covers the concepts and 
mathematics underlying the identification functions provided with 
ISID. It discusses the numerical implementation of the algorithms and 
explains the mathematical significance of the keywords.

• Chapter 4, Tutorial, illustrates how to use the interactive GUI tools in 
a sample identification/validation session. It describes how the ISID 



Chapter 1 Introduction

Xmath Interactive System Identification Module, Part 1 1-2 ni.com

functions can be used to identify models of a simulated two mode 
mechanical system with two inputs and two outputs. 

• Appendix A, List Data Structures, summarizes the structure of the list 
objects used to implement matrix polynomial-based system models 
and the conversion functions between them.

• Appendix B, Loading Data with the read( ) Function, gives a brief 
overview on loading external data into Xmath with the read function.

• Appendix C, Tool-Specific GUI Features, describes the ISID 
interactive tools in detail. It summarizes the general features common 
to all the tools, then lists the approach-specific features of each tool.

• Appendix D, Bibliography, lists a table of bibliographic references. 
Throughout this document, bibliographic references are cited with 
bracketed entries. For example, a reference to [VODM1] corresponds 
to a paper published by Van Overschee and De Moor.

• Appendix E, Technical Support and Professional Services, describes 
support available from National Instruments.

How to Use This Manual
First-time users should read Chapter 2, Identification Process, on general 
features of ISID and the background of the GUI implementation. You may 
then wish to jump directly to the tutorial in Chapter 4, Tutorial, for a 
hands-on illustration. Because the tutorial focuses on user actions and 
results using tool-specific GUI features, you may want to look over 
Appendix C, Tool-Specific GUI Features, while working through it.

Users who are interested in details of the identification algorithms and their 
numerical implementation should read Chapter 3, Identification 
Algorithms, which also is helpful for a better understanding of the 
recommendations made in Chapter 2, Identification Process.

Readers who are not familiar with Parameter Dependent Matrices (PDMs) 
should consult the Xmath User Guide before using ISID functions and 
tools. Although several ISID functions accept both PDMs and matrices as 
input parameters, PDMs are preferable because they can include additional 
information that is useful for simulation, plotting, and signal labeling.



Chapter 1 Introduction

© National Instruments Corporation 1-3 Xmath Interactive System Identification Module, Part 1

Commonly-Used Nomenclature
This manual uses the following general nomenclature:

• Matrix variables are generally denoted with capital letters; vectors are 
represented in lowercase.

• G(s) is used to denote a transfer function of a system where s is the 
Laplace variable. G(q) is used when both continuous and discrete 
systems are allowed.

• H(s) is used to denote the frequency response, over some range of 
frequencies of a system where s is the Laplace variable. H(q) is used to 
indicate that the system can be continuous or discrete.

• A single apostrophe following a matrix variable, for example, , 
denotes the transpose of that variable. An asterisk following a matrix 
variable (for example, A*) indicates the complex conjugate, or 
Hermitian, transpose of that variable. 

Related Publications
For a complete list of MATRIXx publications, refer to Chapter 2, 
MATRIXx Publications, Help, and Customer Support, of the MATRIXx 
Getting Started Guide. The following documents are particularly useful for 
topics covered in this manual:

• MATRIXx Getting Started Guide

• Xmath User Guide

• Xmath Control Design Module

• Xmath Interactive Control Design Module

• Xmath Interactive System Identification Module, Part 2

• Xmath Model Reduction Module

• Xmath Optimization Module

• Xmath Robust Control Module

• Xm ath Xµ Module

x'



Chapter 1 Introduction

Xmath Interactive System Identification Module, Part 1 1-4 ni.com

MATRIXx Help
Interactive System Identification Module function reference information is 
available in the MATRIXx Help. The MATRIXx Help includes all 
Interactive System Identification functions. Each topic explains a 
function’s inputs, outputs, and keywords in detail. Refer to Chapter 2, 
MATRIXx Publications, Help, and Customer Support, of the MATRIXx 
Getting Started Guide for complete instructions on using the MATRIXx 
Help feature.

Overview
The Xmath Interactive System Identification Module, referred to as ISID, 
comprises system identification, model reduction, and signal analysis tools 
for identification of linear, discrete time, and multivariable systems. In 
addition, model parameters of general nonlinear (SystemBuild) models can 
be estimated using ISID’s maxlike( ) function.

ISID is designed to encompass the entire identification process, from raw 
data analysis to validation of identified models. The ISID functions use 
highly reliable numerical algorithms and are capable of identifying large 
multivariable models of high-order systems from large amounts of data. 
They cover a wide range of identification methods. You can select different 
algorithms depending on the particular type of application and the size of 
the problem.

Function Categories
The tables in this section give a complete list of functions relevant to the 
system identification topics addressed in this manual:

• Table 1-1, Nonparametric Identification Methods 

• Table 1-2, Identification and Model Reduction

• Table 1-3, State Space Model Transformations

• Table 1-4, Polynomial Model Transformations

• Table 1-5, Validation Functions

• Table 1-6, Combining Separate Data Sets

• Table 1-7, Input Design

• Table 1-8, General Functions

• Table 1-9, Preprocessing Functions



Chapter 1 Introduction

© National Instruments Corporation 1-5 Xmath Interactive System Identification Module, Part 1

Several Xmath core functions are frequently used with ISID functions, but 
they are not listed here. Notice that the filtering functions included with the 
Xmath core are frequently required for preprocessing operations.

Table 1-1.  Nonparametric Identification Methods

Function Description

etfe( ) Empirical transfer function estimation

sdf( ) Spectral density function estimation

Table 1-2.  Identification and Model Reduction

Function Description

armax( ) Prediction error method for ARMAX models

bj( ) Prediction error method for Box-Jenkins models

giv( ) Generalized instrumental variables

initmodel( ) Initial model estimation for use with pem

initx0( ) Estimator of initial state

irea( ) Identification from impulse response data

ls( ) Time domain least squares

maxlike( ) General maximum likelihood estimation of 
continuous, discrete, linear, or nonlinear systems

oe( ) Prediction error method for output error models

pem( ) Prediction error method

sds( ) Subspace identification method

sst( ) Subspace identification method for output-only data

tfid( ) Continuous-time SISO transfer function 
identification from frequency response data



Chapter 1 Introduction

Xmath Interactive System Identification Module, Part 1 1-6 ni.com

Table 1-3.  State Space Model Transformations

Function Description

canform( ) Converts a state-space system to canonical form 

ctrcf( ) Converts a state-space system to controllable 
canonical form

get_inn( ) Converts an innovations model in ISID format to 
a standard innovations model

obscf( ) Converts a state-space system to observable 
canonical form

put_inn( ) Converts a standard innovations model to an 
innovations model in ISID format

reflect( ) Reflects poles and zeros from the outside of the unit 
circle to the inside

Table 1-4.  Polynomial Model Transformations

Function Description

arma( ) Creates an ARMA system

arma2ss( ) Converts an ARMA system to a state-space system

bpm( ) Creates a Backward-Polynomial innovations Model 
(BPM) system

bpm2inn( ) Converts a BPM to a state-space innovations model

bpmjoin( ) Combines two ARMA models (stochastic and 
deterministic part) into a BPM

bpmsplit( ) Splits a BPM into its stochastic and deterministic 
ARMA components

inn2bpm( ) Converts a state-space innovations model to a 
backward-polynomial model

innjoin( ) Combines deterministic and stochastic models into 
a backwards polynomial innovations model



Chapter 1 Introduction

© National Instruments Corporation 1-7 Xmath Interactive System Identification Module, Part 1

innsplit( ) Splits a state space innovations model into its 
deterministic and stochastic components

ss2arma( ) Converts a standard state-space system to an 
ARMA model

Table 1-5.  Validation Functions

Function Description

etfe( ) Empirical transfer function estimation and 
estimation of the noise spectral density function

giv2var( ) Computes equation error norms from the giv 
cross-product matrices for innovations models

idfreq( ) Frequency response and noise spectral density 
function of innovations models

idimpulse( ) Impulse response and noise covariance function of 
innovations models

idsim( ) General simulation of innovations models

inn2pe( ) Prediction error computation of innovations models

inn2unc( ) Computes frequency response confidence intervals 
for innovations models

ls2var( ) Computes prediction error variances from the ls 
square root

ls2unc( ) Computes frequency response confidence intervals 
for least-squares-derived ARX models

polezero( ) Pole/zero computation and plot

sdf( ) Spectral density function estimation

val( ) General model validation

Table 1-4.  Polynomial Model Transformations (Continued)

Function Description



Chapter 1 Introduction

Xmath Interactive System Identification Module, Part 1 1-8 ni.com

Table 1-6.  Combining Separate Data Sets

Function Description

givjoin( ) Combines two instrumental variables cross product 
matrices into a cross product matrix containing the 
model information of both

lsjoin( ) Combines two least-squares square roots into a 
square root containing the model information of 
both

Table 1-7.  Input Design

Function Description

prbs( ) Pseudo-random binary sequence generator

sweep( ) Sine sweep (chirp) generator

Table 1-8.  General Functions

Function Description

mtxplt( ) Plotting tool designed to produce a matrix of plots

Table 1-9.  Preprocessing Functions

Function Description

poltrend( ) Polynomial trend removal

taper( ) Data tapering



Chapter 1 Introduction

© National Instruments Corporation 1-9 Xmath Interactive System Identification Module, Part 1

Graphical User Interface
Several ISID functions have a built-in graphical user interface (GUI) 
designed to let you quickly compare and validate different models and 
re-examine new results. These GUIs are available for the following 
functions:

etfe( ) irea( ) sst( )

fwls( ) ls( ) val( )

giv( ) sds( )

Each of these functions has an optional {gui} keyword that you can 
specify to invoke its GUI. The purpose of these GUIs is twofold:

• With each of the GUI functions, most of the computation time is spent 
on obtaining an intermediate result—a singular value decomposition, 
square root, or cross product matrix—from which you can obtain 
models of different order quickly. The intermediate step is ideally 
suited to a GUI-supported operation, for you can save a lot of time 
compared to re-executing the entire computation for each new 
parameter setting.

• GUIs conveniently obtain and display results efficiently in a 
standardized format from which you can readily make hard copies.

The graphical interface has been implemented as a set of single-window 
interfaces (one for each function), each with a standardized pulldown menu 
for model validation. The data associated with each GUI is stored in a 
separate Xmath partition. Within any given GUI, you can graphically 
compare results with those of other methods by exchanging models and/or 
data through variables in the Xmath main partition.



© National Instruments Corporation 2-1 Xmath Interactive System Identification Module, Part 1

2
Identification Process

This chapter is a general primer on system identification. It describes how 
Xmath and ISID functions fit into the framework of system identification. 
It provides general guidelines to help you select the most appropriate 
identification approach for a particular problem.

System Identification
System identification is by its nature an iterative process. Raw data 
from a real-world system is acquired, formatted, and processed as 
necessary, identified through a mathematical algorithm to return a 
model representation, after which the model is assessed to see how well 
it describes the observed system behavior.

During the process, several choices have to be made. First, the 
identification itself involves many variables—sampling interval, model 
order, the type of mathematical model to be used, and the fit criterion. 
The user must select all of these, typically experimenting with a range of 
options. While different criteria can be used to select appropriate values and 
a priori information about the system can be incorporated to good use, 
real-world systems very seldom have one true model that completely 
describes all observed behavior. As a result, the engineer is most likely to 
have a number of models that describe the behavior to some extent. 

When a model has been obtained, it needs to be validated—tested to see 
how well the behavior of the model corresponds to both the observed data, 
any prior knowledge of the system, and the purpose for which it will be 
used. In the event that its behavior is not adequate, the identification 
process has to be revised or even reconsidered using another approach.

In addition to all these factors influencing the identification result using a 
particular algorithm, more than one algorithm is sometimes appropriate to 
a particular data set. In such a case, it is typically desirable to compare the 
models obtained across algorithms. The choice of algorithm depends on 
model structure, stochastic assumptions, and numerical properties of the 
algorithm.



Chapter 2 Identification Process

Xmath Interactive System Identification Module, Part 1 2-2 ni.com

Loading and Preprocessing Data
The first step in performing identification is to import the measured system 
data and ensure that it is formatted correctly. You can find instructions on 
how to import data into Xmath in Appendix B, Loading Data with the 
read( ) Function. After the data has been loaded into Xmath and is 
structured compatibly with the ISID tools, a number of preprocessing 
techniques can help ensure that the data is as good (as free from external 
noise and other corruption) as possible. We summarize the most commonly 
applied techniques, appropriately referring to ISID and Xmath functions.

• Data inspection—The human eye is an unsurpassed detector of signal 
corruptions or errors that occur during the preprocessing. Always plot 
the data. There is no better way to spot outliers, clipped saturation, or 
quantization effects. Periodic disturbances are visualized best by 
plotting the spectral density function of the data using the ISID 
sdf( ) function.

• Subtraction of nominal signal values—System identification results 
in models that are a linearized version of the true system around the 
operating point. Since linearization is done with respect to the signal 
values relative to the operating point, we have to subtract the operating 
point signal values from the system identification data. The only 
exception where subtracting the signal averages is not required is the 
case where the system is known to be linear; in practice, this is rarely 
the case.

• Trend removal—Due to external influences, it is possible that low 
frequency and/or periodic signal components, which are irrelevant to 
the particular modeling problem of interest, are added to the data. For 
example, variations due to the 24-hour day cycle in power plants, 
seasonal influences in biological and economical systems, thermal 
expansion in rolling mills, or 50 and 60 Hz components. The amplitude 
associated with trends can be quite large and will corrupt the results of 
signal analysis as well as parametric identification algorithms. Some 
ways to perform trend removal are as follows:

– Polynomial fit—Fitting a polynomial up to a certain order using 
a least-squares criterion is a reliable way of removing most 
trend-like disturbances. Sometimes the fit tends to curl at the 
extremes of the sampling range, which may make it necessary to 
discard some of the samples. You can use the ISID function 
poltrend( ) to remove trends.

– Fourier transform based methods—In the case where a periodic 
trend must be removed, we can take the Fourier transform of the 
data, set the corresponding Fourier coefficients to zero, and 



Chapter 2 Identification Process

© National Instruments Corporation 2-3 Xmath Interactive System Identification Module, Part 1

transform the modified series back to the time domain. You 
can use the Xmath core functions fft( ) and ifft( ) to 
accomplish this. To prevent undesired spikes in the Fourier 
transform, taper the data before applying such techniques. 
You can accomplish this with the ISID function taper( ).

– Highpass filtering—With the filter design functions included 
with the Xmath core routines, highpass filters can be designed 
with a sharp cutoff characteristic. Estimating a good initial 
condition for the filter can be important. You can use the ISID 
function initx0( ) for this purpose. To prevent undesired phase 
shifts, filtering twice in opposite time directions is useful. All of 
these operations are easily performed using standard Xmath 
functions.

• Outliers—Outliers are easily detected by visual inspection. The 
functions sort( ) and spline( ) are helpful in visualizing and 
correcting outliers. For instance, with the following sequence,

[sortX,indx] = sort(X); plot(indx,sortX)

you can easily recognize and retrieve the indices corresponding to 
outliers of the signal stored in the vector X. After that, splining the 
intermediate values using the spline( ) function usually does the 
job.

• Scaling—Preferably, the magnitude of the detrended signal values 
should be in the order of magnitude of 1. The reasons for this are partly 
numerical and partly due to the way in which some algorithms are 
influenced by scaling. In particular, SVD-based algorithms such as the 
ISID functions irea( ), sds( ), and sst( ) are quite sensitive to 
scaling effects in the non-SISO case.

• Periodic disturbances—Periodic disturbances are most easily 
removed using the fft( ) and ifft( ) functions, as discussed in the 
Trend Removal bullet.

• Tapering—This is a pointwise multiplication of the signal vectors by 
a function which goes to zero in a smooth way near the extremes of the 
data interval. The ISID function taper( ) allows you to specify the 
fraction of the data to taper as well as the window type. Tapering 
should be done with most Flatbeds techniques because of the implicit 
periodicity assumption that holds for all Fourier methods in 
combination with nonzero initial and final conditions of the data 
interval. The ISID signal analysis functions sdf( ) and etfe( ) 
incorporate tapering by default. Time domain batch identification 
functions (ls( ), giv( ), sds( ), sst( ), and irea( )) perform 
better without tapering.



Chapter 2 Identification Process

Xmath Interactive System Identification Module, Part 1 2-4 ni.com

• Signal transformations—Because the ISID identification algorithms 
work with linear model structures, it can be important to 
precompensate for static nonlinearities. Examples are as follows:

– Multiplication by the inverse of a calibration curve for an optical 
sensor.

– The choice between enthalpy or pressure and temperature as 
model outputs of a boiler system.

• Postfiltering and desampling—If the sampling frequency is much 
larger than the bandwidth of the system or extends way beyond the 
coherence bandwidth, it is advisable to decrease it by taking every nth 
sample, thereby constructing a new desampled signal. It is imperative 
to filter the data before the desampling is done; otherwise, the 
desampled data will be corrupted by aliasing effects.

Signal analysis is an important step to validate the quality of the data at each 
stage of the preprocessing procedure. In particular, estimates of the spectral 
density function (SDF) and coherence are instrumental in obtaining the 
right desampling rate and in the removal of periodic components. The 
coherence will also help interpreting the results of parametric identification 
methods at a later stage in the identification process. How well signal 
analysis can be applied depends on the data that should be stationary in a 
stochastic sense. We refer to [PRIES] for a comprehensive treatment of 
signal analysis in practice.

You can obtain coherence, covariance function, and spectral density 
estimates using the ISID sdf( ) function. ISID signal analysis capabilities 
are illustrated in the Empirical Transfer Function Estimation section of 
Chapter 3, Identification Algorithms.

Choosing a Modeling and Identification Scheme
After the preprocessing and signal analysis, you must apply parametric 
methods to arrive at a final description in the form of a linear system that 
you can use for prediction and/or control design purposes. There is a wide 
variety of methods available from the literature. The final choice of 
algorithm depends on the desired model structure, numerical efficiency, 
and model quality criterion.



Chapter 2 Identification Process

© National Instruments Corporation 2-5 Xmath Interactive System Identification Module, Part 1

Model Structures
Linear discrete time systems are most commonly represented in state space 
or polynomial form. You can define polynomial model structures in the 
forward or backward shift operator. From an input/output point of view, the 
model class that you choose is irrelevant; you can convert polynomial 
models to state space form and vice versa. The state space representation is 
often preferred, but polynomial models can be much more efficient in the 
case of high-order models.

System identification favors using state space models because a lot is 
known about the parameterization of state space models in so-called 
canonical form. When a state-space system is in canonical form, there is 
a one-to-one correspondence between the model parameters and the 
input/output behavior within the model set. Consequently, parameters 
can be identified uniquely from input/output data.

ISID uses state space systems by default. The result of identification 
methods that are based on polynomial model representations are returned 
in their state space equivalent form. These representations include least 
squares (ls), instrumental variables (giv), and prediction error 
identification of Box-Jenkins (bj), output error (oe), and ARMAX 
(armax) models. In this section we discuss these different ways of model 
representation and introduce innovations models.

• State-space models—Discrete-time state-space models are of the 
form:

The corresponding transfer function is given by:

For any invertible matrix T, the transfer function of a system described 
by the matrices (TAT–1, TB, CT–1, D) is identical to that of A,B,C,D. 
Consequently, if the dimension of the state-space is n, there is an 
ambiguity of at least n2 parameters represented by the T matrix. 
A canonical form is based on a specific choice of T, or equivalently, 
choice of basis vector of the state space. For an introduction to 
canonical forms, refer to [KAI] and the references therein.

xt 1+ Axt But+=

yt Cxt Dut+=

G z( ) C zI A–( ) 1– B D+=



Chapter 2 Identification Process

Xmath Interactive System Identification Module, Part 1 2-6 ni.com

• Auto regressive moving average (ARMA) models—ARMA models 
are based on polynomials in the backward shift operator. The time 
domain model equation is as follows:

Here, the Ak matrices are square and A0 = I. The transfer function is 
defined by

where:

Note ARMA models have a different shift operator than Xmath transfer function 
models—backward shift instead of forward. The lowest order denominator coefficient of 
an ARMA model is identity. In transfer function models, the highest order coefficient is 
identity.

• State-space equivalents of ARMA models—Let us assume that 
an ARMA model (A(z), B(z)) is given with transfer function 
G(z) = A(z)–1B(z) and that the orders of the polynomials are the same: 
n = nA = nB.

Akyt k–

k 0=

nA

∑ Bkut k–

k 0=

nB

∑=

G z( ) A z( ) 1– B z( )=

A z( ) Akz
k–

k 0=

nA

∑=

B z( ) Bkz
k–

k 0=

nB

∑=



Chapter 2 Identification Process

© National Instruments Corporation 2-7 Xmath Interactive System Identification Module, Part 1

The following state-space system (A,B,C,D) has the same transfer 
function G(z):

The state-space model has ns = n × ny states. Generically (if the 
coefficient matrices were chosen at random), the state-space 
representation is minimal.

This demonstrates the storage efficiency of ARMA models—a 
relatively small number of polynomial coefficients can represent a 
state-space model that is much larger. This is especially useful for 
dealing with high-order models that are frequently encountered with 
least-squares applications.

• Innovations models—So far we have considered models with input 
ut and output yt without a separate noise input. In most system 
identification problems, an additional unobserved input et is present. 
In state-space form, these models are described by Equation 2-1.

(2-1)

Prediction error algorithms compute et from yt and ut:

Asymptotic stability of A – KC is therefore important. When this 
condition is satisfied, we call the state-space model in Equation 2-1 
an innovations model or a model in innovations form. We call the 
subsystem with input ut the deterministic part and the subsystem with 
the noise input et the stochastic part. Refer to [AndMo] for an in-depth 
treatment of innovations representations, and the relationship with 
Kalman Filters.

A B
C D 

 
 

A1– I 0 0 . . 0 B1 A1B0–

A– 2 0 I 0 . . 0 B2 A2B0–

: 0 0 0 : :
A– n 2– 0 0 0 I 0 Bn 2– An 2– B0–

A– n 1– 0 0 0 0 I Bn 1– An 1–– B0

A– n 0 0 0 0 0 Bn AnB0–

I 0 0 0 0 0 B0 
 
 
 
 
 
 
 
 
 
 
 

=
.. .

xt 1+ Axt But Ket+ +=

yt Cxt Dut et+ +=

xt 1+ A KC–( )xt B KD–( )ut Kyt+ +=

et Cxt– Dut– yt+=



Chapter 2 Identification Process

Xmath Interactive System Identification Module, Part 1 2-8 ni.com

Note ISID represents innovations models slightly differently—in order to store both 
stochastic and deterministic parts and also the variance of et in a single Xmath system 
variable, the stored system is of the form (A, [B, KS], C, [D, S]) where S is a left square root 
matrix of the noise variance: var(et) = SST. The ISID functions get_inn( ) and 
put_inn( ) transform the ISID form into the standard innovations form and vice versa.

• Backward polynomial innovations (BPM) models—Innovations 
models in polynomial form are expressed as follows:

As a special case we have the well known ARMAX model structure:

This model structure has a state-space equivalent of the form:

Another well-known special case is the Box-Jenkins model structure, 
described by:

Its state-space equivalent is of the form:

The essential difference between ARMAX and Box-Jenkins is the 
independent parameterization of the stochastic and deterministic parts 
with the Box-Jenkins model, whereas those of the ARMAX model have 
an identical state transition matrix parametrized by the coefficients 
Ai(i = 1, …, n).

A z( )yt F z( ) 1– B z( )ut D z( ) 1– C z( )et+=

A z( )yt B z( )ut C z( )et+=

yt F z( ) 1– B z( )ut D z( ) 1– C z( )et+=

A B K
C D I 

 
 

F1– I B1 F1B0–

: I :
Fn– 0 Bn FnB0–

D1– I C1 D1–

: :
I

Dt– 0 Cn Dn–

I I B0 I 
 
 
 
 
 
 
 
 
 
 
 
 
 

=



Chapter 2 Identification Process

© National Instruments Corporation 2-9 Xmath Interactive System Identification Module, Part 1

Some other well known polynomial model structures are ARX and 
output error models. ARX models are a special case of ARMAX 
models with C(z) ≡ I. Output error models are a special case of 
Box-Jenkins models with C(z) ≡ I and D(z) ≡ I.

It is difficult to select a model structure without prior information. 
Some guidelines are as follows:

– The prediction errors of ARX models are linear in the parameters. 
This is a very important reason to use ARX models in practice 
since quadratic prediction error criteria have a unique global 
minimum.

– When the poles of the stochastic and deterministic part are known 
to be identical, you should use an ARMAX structure. Otherwise a 
Box-Jenkins model is preferable.

– You should only use output error models if the additive noise is 
white—in other words, if the noise model has no dynamics at all.

• ISID model structures—Although ISID uses state space models by 
default, it provides a set of functions for creation and manipulation of 
ARMA and backward polynomial models (BPMs) for specialized 
users and/or applications. These models are stored as list variables. 
The structures of these lists are described in Appendix A, List Data 
Structures.

For application of prediction error methods (pem( )), ISID has a set 
of functions to create observable and controllable canonical forms 

A B K
C D I 

 
 

A1– I 0 0 .. 0 B1 A1B0– C1 A1–

A– 2 0 I 0 .. 0 B2 A2B0– C2 A2–

: : : :
A– n 2– I 0 Bn 2– An 2– B0– Cn 2– An 2––

A– n 1– 0 I Bn 1– An 1–– B0 Cn 1– An 1––

A– n 0 0 0 Bn AnB0– Cn An–

I 0 .. 0 B0 I 
 
 
 
 
 
 
 
 
 
 
 

=



Chapter 2 Identification Process

Xmath Interactive System Identification Module, Part 1 2-10 ni.com

(obscf( ) and ctrcf( )). The canform( ) function returns a 
model in observable or controllable canonical form, depending on the 
norm of the parameter vector or the number of parameters. (This is not 
necessarily equal for observable and controllable canonical forms.)

Observable and canonical forms are based on algebraic properties of 
the system matrices and are therefore not necessarily the best model 
parameterization. A parameterization based on eigenvector/eigenvalue 
pairs or any user-defined model structure might be much more useful. 
It is not well known how the choice of parameterization affects the 
number of local minima of the (prediction error) criterion function.

Incorporating Prior Knowledge
The capability of incorporating prior knowledge is limited with most 
black-box identification algorithms. ISID has no specific tools to aid the 
user in this respect. The following can be accomplished with general ISID 
tools:

• Delays—To implement a delay of d samples, the input data must be 
shifted forward in time over d samples before the identification takes 
place. After the model has been identified, you need to add a delay to 
it. You can do this with standard Xmath functions. For instance, for a 
SISO system sys with time step 1, you can add a delay of 3 samples 
as follows:

del= system(makepoly(1),makepoly([1,0,0,0]),{dt=1})

sys = del*sys

• Static gain—For batch identification methods like least squares 
(ls( )) and the subspace methods (sds( ), sst( )) that optionally 
produce an intermediate square root matrix, a known static gain can be 
imposed as follows. First, you must obtain a square root of the data set 
(refer to Equation 3-1). You must create another square root from a 
data set with input equal to 1 and output equal to the known static gain. 
For the SISO case, this is easily generalized to MIMO. Then, using 
lsjoin( ) with a large weight on the second square root, you 
combine these square roots into another one that you can then pass to 
ls( ). These steps provide the final model with the desired static 
gain.

You also can apply this technique to instrumental variables (giv( )), 
where you use givjoin( ) to combine the cross product matrices 
that play the same role as the square root matrix with least squares. 
Besides static gain, you can emphasize any kind of data in the model 
this way.



Chapter 2 Identification Process

© National Instruments Corporation 2-11 Xmath Interactive System Identification Module, Part 1

• Known system matrix elements and parameter structure—With 
the prediction error method (pem( ), initmodel( )), you can pass 
a model structure described by a template system composed of integer 
system matrices. The integers define which elements of the system 
matrices are parameters, which ones are fixed, and which ones are 
described by identical parameters or, eventually, related by a minus 
sign.

• Dependence of deterministic and stochastic parts—As described 
earlier, polynomial models are expressed in a form that displays the 
dependence between the parameters of the deterministic and stochastic 
parts. For instance, a Box-Jenkins model structure reflects 
independence of these parameters. A restriction is that the use of 
specific model structures is restricted to a specific identification 
method (for instance, ARX to ls( ), Box-Jenkins to pem( )).

• Frequency dependent model accuracy—Least squares in the 
frequency domain (fwls( )) uses an explicit weight function that 
you can use to emphasize or de-emphasize the fit in certain frequency 
regions. You can do this for each input independently. The weight 
function is typically based on expected model accuracy derived from 
the coherence estimate (etfe( ), sdf( )).

With the etfe( ) function, you can apply a similar technique where 
you can use a frequency-dependent weight to modify the estimated 
impulse response (inverse Fourier transform of the empirical transfer 
function estimate). You can then use the resulting frequency-weighted 
impulse response provided by irea( ) to obtain a parametric model.

Another general way to (de-)emphasize frequency regions using time 
domain methods is to filter both inputs and outputs with a filter 
representing the desired weight characteristics. You can relate these 
characteristics to prior knowledge or the goal for model usage.

The only algorithm where much more specific prior knowledge can be 
imposed is the maxlike( ) function. The price for this usage is that this 
function uses a much less efficient search algorithm.

Identification/Selection of ID Approach
The question of which method to use for a particular data set depends on 
the data, model (structure) requirements, prior knowledge, and numerical 
efficiency; it cannot always be answered directly. Each identification 
method is in some sense suboptimal for most identification problems. 
Therefore, it might pay to try several methods and pick the model that gives 
the best validation result.



Chapter 2 Identification Process

Xmath Interactive System Identification Module, Part 1 2-12 ni.com

Table 2-1 provides an overview of the pitfalls and benefits of each 
individual ISID algorithm. A combination of methods is often 
recommended; we mention some of them here.

• Impulse realization of high order least squares 
models—(ls( )/irea( )) The least squares method is widely used 
for its numerical efficiency, robustness, and uniqueness of solution. 
However, the stochastic part consists of a poles-only model, which 
produces limited noise modeling capabilities. Thus, the model order 
must be taken much higher than what would ideally be required. In this 
case, impulse model reduction is the best method to obtain the final 
model. The reduction result can be validated directly by comparison 
with the impulse response of the least squares model. Experience has 
shown that this two-step method is one of the most effective ways of 
obtaining models. Both steps are numerically easily solvable and 
require essentially just one parameter that must be chosen by the user 
(model order for ls( ) and number of singular values for irea( )).

• One-shot identification of time domain data—(sds( ), giv( )) 
To obtain a model of the data in one step, the subspace algorithm and 
instrumental variables method are the most suitable ones. Using these 
algorithms, you can obtain models with minimal effort.

• Identification of frequency domain data—(fwls( )) In the case 
where you have frequency response data from a spectral analyzer, you 
can use the frequency domain least squares method directly to obtain 
a parametric model. You can pass a weight function for each input or 
create it graphically using the fwls( ) GUI.

• Identification of frequency domain data—(ifft( )/irea( )) 
You can use the inverse Fourier transformation (ifft( )) to 
transform empirical frequency response data to the time domain. 
(To do this, the frequency response needs to be two-sided.) Next, 
you can apply irea( ) to obtain a parametric model efficiently.

• Closed-loop identification with a measured external 
reference—(etfe( ), giv( )) External references are used 
explicitly by the empirical transfer function estimate (etfe( )) 
and instrumental variables (giv( )). To derive a parametric model 
from the etfe( ) result, you can use irea.

• Closed-loop identification without a measured external 
reference—(ls( ), pem( )) [AndGev] and [Söd] have proven that 
under certain conditions on the delay structure of the loop and noise 
correlation, prediction error methods can be applied in closed loop 
situations to identify open loop models. This includes the least squares 
method since that is a prediction error method as well. The background 
theory of this approach to closed loop identification is based on an 



Chapter 2 Identification Process

© National Instruments Corporation 2-13 Xmath Interactive System Identification Module, Part 1

infinite amount of data and idealized model assumptions with some 
additional restrictions. Therefore, you should interpret the results with 
care and, if possible, compare them with the result of simulated data of 
existent models.

• Efficiency and robustness—(etfe( )/irea( ), ls( )/irea( ), 
etfe( )/fwls( ), sds( )) In the case of large amounts of data 
and high-order models, memory-efficiency dictates the use of very 
efficient methods. You can call ls( ) and sds( ) with the 
{lattice} keyword to take advantage of a fast square root algorithm. 
Empirical transfer function estimation also is a robust and memory- 
and time-wise efficient method. Next, you can apply impulse 
realization and/or frequency weighted least squares to convert the 
nonparametric modeling results to the final model.

• Modeling of general nonlinear systems in continuous or discrete 
time—(maxlike( )) You can use the well-known maxlike 
algorithm to identify parameters in virtually any type of model 
structure. This includes models in SystemBuild, parameterized by 
variables on the Xmath stack. The time required to complete is 
generally long due to the fact that numerical derivatives are used.

• Identification of continuous time systems from frequency domain 
data—(tfid( ), makecontinuous( )) The tfid( ) function 
fits a SISO model to a continuous time frequency response. 
Another approach to obtaining continuous time models is to use 
makecontinuous( ), which you can apply to MIMO models as 
well. Going from discrete to continuous time models can give 
problems though, particularly in the case of discrete time model 
poles on the negative real axis.

• Fine-tuning the model—(pem( )) When you obtain a good initial 
model with any of the methods mentioned above, you can obtain a final 
model using the prediction error method. This method performs a 
combination of Gauss-Newton and steepest descent methods to find 
the parameter estimate; it can be initialized with an initial deterministic 
or innovations model. pem( ) has a built-in initial model estimator 
(initmodel( )) that you can use in case you make a one-shot call to 
pem( ) and pass only model order information.

• Time series modeling—(sst( ), ls( )) You can perform 
identification of time series without external input using the stochastic 
subspace algorithm (sst( )) or least squares (ls( )). sst( ) has an 
interactive GUI tool that makes it more convenient to use.



Chapter 2 Identification Process

Xmath Interactive System Identification Module, Part 1 2-14 ni.com

Using Intermediate Results
The command line syntaxes of least squares (ls( )), the subspace 
algorithms (sds( ), sst( )) and instrumental variables (giv( )) can 
take advantage of an intermediate numeric quantity from which models 
of different (lower) order can be extracted with a relatively small 
computational effort. ls( ), sds( ), and sst( ) provide a square 
root matrix and giv( ) provides a cross product matrix. The functions 
compute these quantities directly from the data and return them as optional 
outputs. 

Saving these quantities for several data sets allows you to combine the 
results so that you have identification over several data sets. The functions 
for this are lsjoin( ) and givjoin( ). This is particularly useful in the 
case where MIMO systems are excited one input at a time. Another benefit 
of saving these quantities is that extremely large identification problems 
can be broken apart into smaller ones.

Frequency weighted least squares (fwls( )) also produces a square root 
of the same format as the ls( ) square root; therefore it can be combined 
with time domain square roots in case it is necessary to mix time and 
frequency domain information.

Model Validation
The final stage in the identification procedure is validation—providing a 
measure of the quality of the model obtained through the identification. 
We provide both quantitative and graphical validation tools.

We recommend the use of coherence, spectral density function, and 
empirical transfer function estimates (sdf( ), etfe( )). They provide 
important information about the signal to noise ratios in different frequency 
regions and help establish the reliability of parametric models later on.

To interpret coherence estimates in the MIMO case, notice that the ISID 
sdf( ) function estimates the coherence of input-output pairs in a scalar 
manner. This implies that the coherence of any given input-output pair is 
decreased by the effect of all other inputs. Therefore, to judge the coherence 
of a single output signal of a system with the inputs, you must consider the 
coherences of all inputs with that particular output.

Frequency domain model error estimate functions are available for the 
least-squares (ls2unc( )) and general system models (inn2unc( )). 



Chapter 2 Identification Process

© National Instruments Corporation 2-15 Xmath Interactive System Identification Module, Part 1

They are based on a pointwise conversion of the parameter variance 
estimate to a frequency response variance estimate.

Another important validation tool for least squares is the cross validation 
provided by ls2var( ). It computes prediction error norms from one or 
two square root matrices. The correct way of using ls2var( ) is to pass 
two square roots—one obtained from the identification data set and one 
from the validation data set. In case a separate validation data set is not 
available, it is advisable to use the identification data set. In using 
ls2var( ), you should split the identification data set into two parts for 
obtaining the square roots if the data is stationary in a stochastic sense. For 
instrumental variables, giv2var( ) plays a similar role as ls2var( ) for 
least squares.

The val( ) function is a general validation tool that provides a graphical 
interface for validating a model with or without an additional input-output 
data set. It allows you to view the data, prediction errors, cross-correlation 
of the input and prediction error, model responses, and pole-zero locations 
for the identified model.

Identification Function Feature Summary
For a summary of identification functions and their features, refer to 
Table 2-1.

Table 2-1.  Identification Function Feature Summary

etfe fwls giv irea ls maxlike pem sds sst tfid

MIMO identification x x x x x x x x x —

Parametric estimation methods — x x x x x x x x x

Prediction error methods — — — — x x — — — —

Incorporates a priori knowledge 
or initial model estimate

— — — — — x x — — —

Impulse response data — — — x — — — — — —

Frequency domain data — x — — — — — — — x

Continuous identification — — — — — x — — — x

Discrete identification x x x x x x x x x —

Nonlinear identification — — — — — x — — — —

Uses square roots for lower order 
re-identification

— x — — x — — x x —



Chapter 2 Identification Process

Xmath Interactive System Identification Module, Part 1 2-16 ni.com

Includes interactive tool option x x x x x — — x x —

Large problem efficiency — — — — x — — — — —

Output-only — — — — x — — — x —

Table 2-1.  Identification Function Feature Summary (Continued)

etfe fwls giv irea ls maxlike pem sds sst tfid



© National Instruments Corporation 3-1 Xmath Interactive System Identification Module, Part 1

3
Identification Algorithms

This chapter describes the concepts and mathematics underlying the 
identification functions provided with ISID. This includes the numerical 
implementation of the algorithms and the mathematical significance of the 
keywords.

Least-Squares in the Time Domain
The least-squares approach, implemented in the ls( ) function, is one 
of the most important in terms of efficiency, simplicity of operation, 
and robustness. The following sections describe the basic least-squares 
algorithm and the use of previously identified data to obtain lower-order 
models.

Least Squares for ARX Models
Assume that the following data set consisting of system inputs ut and 
system outputs yt is given.

{u1, y1, u2, y2, …, uN, yN}

We want to fit the following ARX model to the data:

(3-1)

The criterion to be minimized is given by

where W is a constant, positive definite, symmetric weighting matrix, and 
where ϑ is a parameter matrix containing the elements of the Ak’s and Bk’s. 
To simplify the problem formulation, we assume temporarily that 
n = nA = nB and write all equations shown in Equation 3-1 for 
t = n + 1, …, N in matrix form.

yt A1yt 1– … Anyt nA–+ + + B0ut B1ut 1– … Bnut nB– εt+ + + +=

J ϑ( ) εt
TWεt

t n 1+=

t N=

∑=



Chapter 3 Identification Algorithms

Xmath Interactive System Identification Module, Part 1 3-2 ni.com

(3-2)

This equation is of the form:

The well-known standard least-squares solution is:

(3-3)

LS Square Root
The solution of the batch least-squares equation for the parameter vector ϑ, 
shown in Equation 3-3, is easily implemented but can be obtained in a more 
reliable manner by using a square root method as follows. Assume that the 
QR transform of (X Y) is of the form,

with S square and upper triangular. The least-squares solution is then given 
by

(3-4)

and the sum of squares error matrix by ST
ESE = ETE. The term square root 

originates from the fact that SX is a square root of XTX, that is, 

un
T yn

T un 1–
T yn 1–

T .. u1
T y1

T un 1+
T yn 1+

T

un 1+
T yn 1+

T un
T yn

T .. un
T yn

T un 2+
T yn 2+

T

: : : : : : : : :

uN 1–
T yN 1–

T uN 2–
T yN 2–

T .. uN 2–
T yN 2–

T uN
T yN

T
 
 
 
 
 
 
 
 

B– 1
T

A1
T

B– 2
T

:

B– n
T

An
T

B– 0
T

I
---------

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

εn 1+
T

εn 2+
T

:

εN
T

 
 
 
 
 
 
 
 

=

X Y( ) ϑ–
I

------- 
  E=

ϑ
ˆ

XTX
1–

XTY=

X Y Q
SX SY
0 SY
0 0

Q S
0

= =

θ̂ SX=
1–
SY



Chapter 3 Identification Algorithms

© National Instruments Corporation 3-3 Xmath Interactive System Identification Module, Part 1

. We will refer to SX as the LS square root. It is stored in a 
format described in Appendix A, List Data Structures.

The arrangement of the data matrix shown in Equation 3-4 makes it 
relatively easy to extract lower-order models from the upper triangular 
matrices SX and SY.

Singular Value-Based Solutions
An alternative solution based on the most significant components in X and 
Y is obtained from a singular value decomposition (SVD). Let the SVD of 
SX be given by

SX = U S VT

where S is of the form:

Σ is a diagonal matrix with positive diagonal elements. U and V are 
orthogonal matrices that are partitioned accordingly: 

Because of the orthogonality property of U, we can reformulate the 
least-squares problem as the minimization of

If there are singular values equal to zero, then there will be several 
solutions. The one with the smallest norm for VT ϑ, and therefore also for 
ϑ, is given by

In most practical applications, the data is always noisy and all singular 
values of S are larger than zero. In that case we set the singular values below 
a certain tolerance to zero and continue the computations in the way just 
shown.

SX
TSX X TX=

S Σ 0
0 0

=

U U1 U2= V V1 V2=

SY USVTϑ– UTSY SVTϑ–=

ϑ
ˆ V1Σ 1– U1

TSy
0

=



Chapter 3 Identification Algorithms

Xmath Interactive System Identification Module, Part 1 3-4 ni.com

Least Squares with Scalar Denominator 
In cases where the elements of a multivariable transfer function are known 
to have the same poles, it is useful to use an identification algorithm which 
incorporates that property. In a MIMO model structures, this implies that

Ai = ai I (i = 1, …,n)

where the ai’s are real-valued scalars. The fact that the off-diagonal 
elements are zero does not affect the linearity of the prediction error in the 
parameters, which implies that it is still possible to solve the parameters 
based on a standard least-squares method. We do not discuss the details of 
the required modifications to the algorithm, except to mention that it results 
in the same computational load as the standard square root least-squares 
algorithm. In other words, the matrices SX, SY, and SE for the standard 
least-squares problem are the same as with the scalar denominator case.

Fast Least Squares with a Lattice Algorithm
You can use the {lattice} option to speed up the identification of 
high-order models from large amounts of data. This option activates an 
order (n) algorithm that can be significantly faster for large n than the 
standard algorithm, which is of order (n2). Asymptotically, the difference 
in speed is approximately a factor n/2. The storage requirements of the 
algorithm are of order (n) as well. The lattice algorithm is not a default 
choice because it is numerically less stable than the standard algorithm. 
For most data sets, however, the algorithm performs equally well.

Like the standard LS algorithm, the LS-lattice algorithm produces a square 
root. This lattice square root is different; it only contains the upper block 
row of the standard LS square root. For details, refer to [ALING]. 
lsjoin( ) can use the lattice square roots in an identical manner as the 
standard LS square roots to combine the information of multiple data sets 
into a single square root. This square root then serves as the input for 
functions such as ls( ), sds( ), and ls2var( ).



Chapter 3 Identification Algorithms

© National Instruments Corporation 3-5 Xmath Interactive System Identification Module, Part 1

Generalized Instrumental Variables
The generalized instrumental variables (GIV) method resembles the 
approach employed with LS. The primary difference is that the system to 
be identified is of the form:

where νt is a noise term that is not necessarily ideally white, as with the 
least squares case. Assume that we can define a sequence of instrumental 
variables vectors zt that is uncorrelated with νt. For the open loop case, the 
input sequence—or a filtered version of it—is often a good choice.

Now define

where n1 = max(nA, nB, lp) + 1 and n2 = N – lf. lf and lp represent the number 
of future and past lags accounted for by the instrumental variables. The 
generalized instrumental variables estimate is then defined by the 
minimization over ϑ of ZT([Y, U0, U]ϑT – Y0) where 

.

Akyt k–

k 0=

nA

∑ Bkut k– νt+

k 0=

nB

∑=

Z

zn1 1f+
T ... zn1 lp–

T

: :

zt lf+
T ... zt lp–

T

: :

zn2 lf+
T ... zn2 lp–

T

= Y

yn1 1–
T ... yn1 nA–

T

: :

yn1 nA–
T ... yt nA–

T

: :

yn2 1–
T ... yn2 nA–

T

=

U

un1 1+
T ... uni nB–

T

: :

ut 1–
T ... ut nB–

T

: :

un2 1–
T ... un2 nB–

T

= Y0

yn1

T

:

yt
T

:

yn2

T

= U0

un1

T

:

ut
T

:

un2

T

=

ϑ A1 … AnA B0 …,BnB, , , ,[ ]=



Chapter 3 Identification Algorithms

Xmath Interactive System Identification Module, Part 1 3-6 ni.com

For the case where  is a square matrix, this estimate is the 
standard instrumental variable (IV) estimate. In cases where this matrix 
has more rows than columns,  is determined by a least squares solution, 
which is called the generalized instrumental variables estimate. This 
estimator can be considerably more robust than the standard IV estimator, 
in particular when  is four to five times the model order.

Spectral Density Function Estimation
Assume that N samples of an observed signal xt are available. The discrete 
Fourier transformation (DFT) X(ωk) of xt is defined as:

where

This formula reflects the periodicity of period N, which is inherent in the 
definition of DFT. The inverse DFT formula is given by:

In case there are two signals yt and ut, the sample cross covariance function 
is defined by:

The DFT Syu or Ryu is known as the cross spectral density function (SDF) 
of yt and ut and is given by:

ZT Y U0 U, ,[ ]

ϑ

lp lf+

xt
1
N
---- 
  X ωk( )e

iωkt

k 0=

N 1–

∑=

ωk
2πk
N

--------- k Z∈( )=

X ωk( ) xte
iωtk–

t 0=

N 1–

∑=

Ryu m( ) 1
N
---- ynun m–

n 0=

N 1–

∑=

Syu ωk( ) Ryu t( )e
iωtk–

t 0=

N 1–

∑=



Chapter 3 Identification Algorithms

© National Instruments Corporation 3-7 Xmath Interactive System Identification Module, Part 1

In case yt = ut, the SDF is an estimate of the auto spectral density function 
and represents the power distribution of the signal as a function of 
frequency. Cross spectral densities are the basis for the computation of the 
coherence Cyu. This quantity is a normalized cross spectral density function 
defined as follows:

The coherence is a number between 0 and 1 which expresses the extent to 
which y and u are linearly related. The coherence is most easily interpreted 
as a frequency-dependent correlation coefficient.

The formulas above represent the basic (raw) definitions of SDF and 
covariance functions. SDF estimates are based on slightly modified 
definitions. The modifications are meant to reduce the variance of the 
estimate and to account for the periodicity assumptions, which do not hold 
for most practical cases. The most common methods to achieve this follow.

• Frequency domain averaging—Averaging the raw SDFs obtained 
from different windows of the time domain data. In the sdf( ) and 
etfe( ) functions, the window width is an input parameter. It is 
possible to let the windows overlap using the {overlap} keyword. 
This can give considerable improvement, in particular with 
nonstationary data.

• Correlation averaging—Averaging over the raw covariance 
functions that were obtained from different time domain windows. 
Taking the Fourier transform yields the smoothed SDF.

• Autoregressive estimation—Using high-order auto regressive (AR) 
models for parametric spectral estimation. The AR model order plays 
a similar role to the window width with the standard method.

The effect of nonperiodicity of the data in each window can be reduced by 
tapering the data in each window. This significantly reduces distortions in 
the Fourier coefficients. The choices of window type and the equations 
corresponding to them for an N-point window are:

• Hamming—Hamming window, given by the equation

0.54 – 0.46 * cos(2πn/(N – 1)) for 0 ≤ n ≤ N – 1.

• Hanning—Hanning window, given by the equation

0.50 – 0.50 * cos(2πn/(N – 1)) for 0 ≤ n ≤ N – 1.

Cyu ωk( )
Syuωk

Syy ωk( )Suu ωk( )
------------------------------------------=



Chapter 3 Identification Algorithms

Xmath Interactive System Identification Module, Part 1 3-8 ni.com

• Triangular—Triangular window, given by the expression

2 * [0:round((N – 1)/2,{down}), round((N – 2)/2,{down}):0:–1]/(N – 1).

• Blackman—Blackman window, given by the equation

0.52 – 0.50 * cos(2πn/(N – 1)) + 0.08 * cos(2πn/(N – 1)) for 0 ≤ n ≤ N – 1.

• Rectangular—Corresponds to no windowing, or a window function 
consisting of all ones.

Remarks on the Implementation of SDF
• Only the values in the frequency range [fmin, fmax] are returned. This 

range can be specified by keywords. By default, fmax = 1/2 dt (the 
Nyquist frequency). Thus, specifying a 128-point SDF (implicitly over 
the digital frequency range [0,π]) returns as output a one-sided SDF of 
65 points over [0,π]. 

• The average value of the SDF estimates is independent of data length 
and number of windows. The normalization has been chosen such that 
the SDF of a N(0,1) distributed time series has an average value of one 
pointwise for all frequencies. It implies, however, that the vector norm 
of the SDFs is dependent on these parameters.

• Because of the normalization of the SDF discussed above, the 
covariance function obtained as the inverse Fourier transform of the 
sdf( ) has the right scaling. In the case of white noise, the covariance 
function has a peak at the first element. To get the peak in the middle, 
pass the keyword {covwrap} to sdf( ).

• If the number of data samples n is not an even power of 2, only the first 
m samples are used within sdf( ), where m is the largest power of 2 
not exceeding n. For data of a non-power-of-2 length, it is a good idea 
to taper and pad the data with zeros to a power of 2 before calling 
sdf( ). Refer to the taper( ) function explanation in the Tapering 
bullet in the Loading and Preprocessing Data section of Chapter 2, 
Identification Process. 

• Auto spectral density functions produced by sdf( ) are guaranteed to 
be positive definite unless the {bt} keyword (correlating averaging) is 
used with a different window than the standard rectangular window. 
Under the same conditions, coherences computed with the {coh} 
keyword have a range of (0,1).



Chapter 3 Identification Algorithms

© National Instruments Corporation 3-9 Xmath Interactive System Identification Module, Part 1

Empirical Transfer Function Estimation
Let Y(ωk) and U(ωk) be the discrete Fourier transforms of the system 
output yt and input ut, respectively. Assume that the time domain system 
equation is given by:

Under the assumption that yt, ut, and et are periodic with period N, the 
following frequency domain relationship holds:

(3-5)

Postmultiplication of Equation 3-5 by  leads to:

where ∗ indicates complex conjugate transposed.

If et and ut, and therefore E(ωk) and U(ωk) are uncorrelated, this results in

which leads to

where Syu and Suu are the cross and auto spectral density functions defined 
in the Spectral Density Function Estimation section. This is the basic 
relationship that is used for estimation of the frequency response—the 
empirical transfer function estimate (ETFE).

In case ut and et are correlated by feedback but an additional (reference) 
signal rt is available that is uncorrelated with et, we would analogously 
obtain:

(3-6)

yt Gkut k– Hket k–

k 0=

N 1–

∑+

k 0=

N 1–

∑=

Y ωk( ) G eiωk( )U ωk( ) H eiωk( )E ωk( )+=

U ωk )*(

Y ωk( )U ωk( )* G eiωk( )U ωk( )U ωk( )* H eiωk( )E ωk( )U ωk( )*+=

ε Y ωk( )U ωk( )*{ } G e
iωk( )ε U ωk( )U ωk( )*{ }=

Geiωk Syu ωk( )Suu ωk( ) 1–=

G e
iωk( ) Syr ωk( )Sur ωk( )R=



Chapter 3 Identification Algorithms

Xmath Interactive System Identification Module, Part 1 3-10 ni.com

Here, the superscript R denotes the right inverse, which we assume to be 
well defined. In practice, the SDFs in these equations are replaced with 
estimates, where similar averaging techniques are used as described in the 
Spectral Density Function Estimation section.

Identification from Impulse Response Data
Because several identification methods result in high-order or 
nonparametric model structures, model reduction is often required as an 
intermediate or final step. Methods based on impulse response coefficients, 
or Markov parameters, are particularly useful because they can be applied 
to parametric as well as nonparametric models. For instance, the impulse 
response can be obtained from a high-order model or by taking the inverse 
Fourier transform of an empirical transfer function estimate. We discuss an 
impulse-response-based realization algorithm (irea( )) with such 
options as the Zeiger/McEwen and Kung/Kailath method. We assume 
noise-free system equations of the form,

and define Gk (k ≥ 0) as the impulse response coefficients. These are 
defined by matrices within column j of the kth sample of an impulse 
response on the jth input. Given the system parameters, they are 
equivalently given by:

G0 = D and 

The algorithm is based on a singular-value decomposition of a Hankel 
matrix filled with the Markov parameters Hηn(k – 1), defined by:

xt 1+ Axt But+=

      yt Cxt Dut+=

Gk CAk 1– B= k 0>,

Hην k 1–( )

Gk Gk 1+ ... Gk ν 1–+

Gk 1+ Gk 2+ ... Gk ν+

: : : :
Gk η 1–+ Gk η+ ... Gk ν η 2–+ +

=



Chapter 3 Identification Algorithms

© National Instruments Corporation 3-11 Xmath Interactive System Identification Module, Part 1

This matrix is the product of three terms,

Hηn(k) = Vη Ak Wn

where,

and:

Here, Vη and Wν are the extended observability and controllability matrix.

Let the SVD of Hηn(0) be defined by:

(3-7)

where Σ contains nonzero diagonal elements only.

We will show that the state-space matrices associated with the transformed 
state , where

are formulated entirely in terms of Markov parameters and can therefore be 
obtained from the impulse response data. First, notice that the inverse of T 
is given by:

Vη

C
CA

:

CAη 1–

=

Wv B AB…Av 1– B[ ]=

Hην 0( ) U1 U2 U1 U2
V1
T

V2
T

U1ΣV1
T= =

x̃t Txt=

T Σ
1
2
---–

U1
TVη=

T 1– WηV1Σ
1
2
---–

=



Chapter 3 Identification Algorithms

Xmath Interactive System Identification Module, Part 1 3-12 ni.com

The proof is given by straightforward multiplication, using the fact that 
Vη Wn = Hηn(0) = U1ΣV1

T. The transformed state matrices are shown in 
Equation 3-8:

(3-8)

Here, we have used the equalities Vη A Wν = Hη,ν(1), Vη B = Hη, 1(0), C 
Wν = H1, ν(0).

Equation 3-8 contains Markov parameters only and therefore constitutes a 
realization algorithm. This is the Zeiger-McEwen approximate realization 
algorithm [Zeig]. 

Another relationship used to compute the A matrix that is employed in the 
Kung/Kailath algorithm [Kung] is derived as follows: Define  and U1 as 
the matrices consisting of the top block rows 2,…,η and 1,…,η – 1 of U1, 
respectively; then, by straight substitution it is easily seen that

This equation determines  uniquely and can be used as an alternative for 
Equation 3-8. 

If the conditions are non-ideal and the impulse response data is corrupted 
by noise, Σ in Equation 3-7 will most likely occupy the whole matrix with 
several small nonzero singular values. In that case, you can set singular 
values that are smaller than a certain tolerance to zero after which the 
computation continues as described above. You can easily validate the 
result by comparing it with the original impulse response.

Ã TAT 1– Σ
1
2
---–
U1
THη ν, 1( )V1Σ

1
2
---–

= =

B̃ TB Σ
1
2
---–
U1
THη 1, 0( )= =

C̃ CT 1– H1 ν, 0( )V1Σ
1
2
---–

= =

D̃ D Y0= =

U1

U1Σ
1
2
---
Ã U1Σ

1
2
---

=

Ã



Chapter 3 Identification Algorithms

© National Instruments Corporation 3-13 Xmath Interactive System Identification Module, Part 1

Remarks
• Depending on the size of the problem, the SVD might take a 

considerable amount of computation time. After you have obtained the 
SVD, however, you also can easily obtain approximations of several 
orders without recomputing the SVD.

• There is no clear interpretation of the effect of the approximation in 
terms of criteria like H∞ norms. Thus, we can only conclude that the 
most significant components of the Hankel matrix are used. In 
practical applications, however, it turns out that irea is a very useful 
and practical tool.

• Singular value-based model reduction techniques are very sensitive to 
scaling in the non-SISO case.

Least Squares-Frequency Domain
You also can apply the least squares approach discussed in the 
Least-Squares in the Time Domain section to fit an ARX model to 
frequency response data obtained experimentally or through other 
identification routines using the fwls( ) function.

The method exhibits the same computational simplicity and efficiency as 
ls. Suppose a frequency response G(z) is given and that we want to fit an 
ARMA frequency response, , to it, where

To simplify the problem, we formulate an error ∆(z) that is linear in the 
parameters by:

(3-9)

These equations can be written as shown in Equation 3-10.

Here, the variables  are the points on the complex unit circle 
corresponding to the frequencies ωi of interest. The matrices X, Y, and E 
in this case are complex valued matrices so we must add the complex 
conjugate equations in order to obtain real Ai’s and Bi’s. The solution is 
done in the same way as in the time domain, the only difference being 
that we need a complex QR transform instead of a real one. Because the 

Ĝ z( ) A z( ) 1– B z( )=

A z( ) I Aiz
i–

i 1=

n

∑+ B z( ), Biz
i–

i 0=

n

∑= =

∆ z( ) A z( )G z( ) B z( )– A z( ) G z( ) Ĝ z( )–( )= =

zi e
jωi=



Chapter 3 Identification Algorithms

Xmath Interactive System Identification Module, Part 1 3-14 ni.com

structure is exactly the same as in Equation 3-2, we also can obtain 
lower-order models analogously.

(3-10)

If the fit is not good enough in a certain frequency band, we can emphasize 
that part of the data by multiplying the corresponding block rows of 
Equation 3-10 with a weight function that has a large value in that region. 
Outside the emphasized frequency region, the fit usually displays a smooth 
roll-off. In the MIMO case, it is possible to weight each individual row; this 
is equivalent to using a different weight function for each input.

For scalar systems, the weight function

where A(z) is obtained from an earlier obtained unweighted solution, 
can be a good choice. The reason is that the approximation, which takes 
place in terms of frequency response, is weighted by A(z) according to 
Euqation 3-9. The result can be shaped interactively by changing the 
weight function. You can usually obtain a good fit after a few iterations.

: : : : : : : :

zi
1– I zi

1– GT zi( ) zi
2– GT zi( ) .. zi

n– I zi
n– GT zi( ) I GT zi( )

: : : : : : : :

B1
T–

A1
T

B– 2
T

A2
T

:

B– n
T

An
T

B– 0
T

I

:

∆T zi( )
:

=

W ωi( ) 1
A zi( )
---------------=



Chapter 3 Identification Algorithms

© National Instruments Corporation 3-15 Xmath Interactive System Identification Module, Part 1

Prediction Error Methods
The least-squares approach implemented in ls is an example of the more 
general Prediction Error Method (PEM). Here the objective is to minimize 
the criterion , defined by:

(3-11)

where ετ is the prediction error or innovation determined by the parametric 
model structure:

(3-12)

A statistically optimal result is obtained if we take W as the inverse of the 
variance Λ of εt, or, because we are dealing with an unknown system, an 
estimate of the variance.

Because the identification problem represented by Equation 3-11 and 
Equation 3-12 can be highly nonlinear, we are faced with much larger 
numerical problems than with the least-squares case. The standard 
implementation is based on the Gauss-Newton method. Here, the term 
Gauss refers to the statistical assumptions that lead to the quadratic 
criterion (Equation 3-11), and Newton refers to the optimization scheme 
that is based on a locally quadratic approximation of the criterion. 
Alternatively, the steepest descent method is a good alternative if the 
quadratic approximation does not work.

In any case, this type of optimization requires several iterations before the 
(local) minimum is obtained. Each iteration involves computation of 
Equation 3-11 and estimation of the gradient over the whole batch of data. 
This implies a numerically intensive procedure—the price to pay for the 
ability to use a more general model structure than ARX.

Estimation Algorithm
A quadratic local approximation of the criterion is:

J ϑ( )

J ϑ( ) εt
TWεt

t n 1+=

t N=

∑=

yt Ĝ z( )ut Ĥ z( )εt+=

J ϑ( ) J ϑ0( )
ϑd
d J θ0

ϑ ϑ0–( ) 1
2
--- ϑ ϑ0–( )T

ϑ2

2

d

d J ϑ0
ϑ ϑ0–( )+ +=



Chapter 3 Identification Algorithms

Xmath Interactive System Identification Module, Part 1 3-16 ni.com

The minimum  over  is: 

With the definition , this can be approximated by:

The last term is a standard least-squares estimate, which can be 
implemented with Xmath’s backslash operator—a Gauss-Newton update. 
In case the quadratic approximation is poor, a steepest descent gradient 
method is a better choice. For this, assume the linear approximation

If we pick a steepest descent update

where µ is the step size, the new criterion value becomes

This is guaranteed to be less than the original value under the assumption 
of linearity, which, of course, only holds in a small neighborhood. The 
pem( ) function uses a combination of Gauss-Newton and steepest 
descent updates, using a variety of step sizes by iteratively cutting the step 
size in half for a specified number of times. The next parameter value is 
defined as the one that gives the best update in the sense of the criterion 
value, which is recomputed after each update. The whole procedure is then 
repeated with  replaced by , and so forth. The search procedure stops 
after one of the following:

• The criterion cannot be improved significantly, that is, beyond a 
specified improvement threshold.

• A specified maximum number of iterations has been reached.

ϑ1 ϑ

ϑ1 ϑ0
ϑ2

2

d

d J ϑ0

1–

ϑd
d J θ0

T

–=

ψt ϑd

dεt=

ϑ1 ϑ0 ψt
TWψt

t
∑

1–

εt
TWψt

t
∑

T

–=

J ϑ( ) J ϑ0( )
ϑd
d J θ0

ϑ ϑ0–( )+=

ϑ ϑ1 ϑ0 µ
ϑd
d J θ0

T
–= =

J ϑ1( ) J ϑ0( ) µ
ϑd
d J θ0

T

ϑd
d J θ0

–=

ϑ0 ϑ1



Chapter 3 Identification Algorithms

© National Instruments Corporation 3-17 Xmath Interactive System Identification Module, Part 1

Specialized Model Structures
For ease of use, the functions oe( ), armax( ), and bj( ) have been 
created for prediction error identification of output error, ARMAX, and 
Box-Jenkins models, respectively—or, more precisely, their state space 
equivalents. They make use of pem( ) internally.

Subspace Identification Methods
The subspace identification algorithms implemented in sds( ) and 
sst( ) identify state-space systems through geometrical concepts such as 
subspaces, projections, and angles; they exploit numerically robust 
algorithms, such as the QR and SVD decompositions. An idea central to 
these algorithms is the concept of a state in system identification.

An estimate of the state is first calculated as an intersection (or a projection) 
between past and future input-output data [LARI2, MOON, VODM1, 
VODM2]. State estimates identify a state-space model through a 
least-squares solution of a set of linear equations. This concept is illustrated 
in Figure 3-1 where the left side shows the subspace approach—first 
Kalman states and then system matrices; the right side is the classical 
approach—system first and then an estimate of the states.

Figure 3-1.  Least Squares versus Kalman Filter

Input-Output data uk yk,

Projection and 
Principal directions

Classical
Identification

Least
Squares

Kalman
Filter

Kalman States

System Matrices

System Matrices

Kalman States



Chapter 3 Identification Algorithms

Xmath Interactive System Identification Module, Part 1 3-18 ni.com

Because subspace algorithms are part of a relatively new approach, 
this section provides a broad description of their characteristics. The 
differences between subspace identification and existing identification 
techniques are as follows:

• Choice of model order is based on singular values or angles between 
data spaces.

• Detailed parameterization data is not required; you need only the 
model order.

• Numerical search procedures are avoided by using QR and singular 
value decompositions.

Combined Deterministic-Stochastic Systems
The sds( ) function for subspace deterministic-stochastic (SDS) systems 
estimates state-space innovation models as shown below. Assume that the 
input-output data is generated by the system:

with

where E denotes the expected value operator and δkl, the Kronecker index 
delta.

Defining the number of states as ns, the number of inputs as nu, and the 
number of outputs as ny, Qs is ns × ns, Ss is ns × ny, Rs is ny × ny. vk and ωk 
correspond to unmeasurable white noise vector sequences with a 
zero-mean Gaussian distribution. {A,C} is assumed to be observable, 
while {A, (B (Qs)1/2)} is assumed to be controllable.

The sds( ) function first determines the matrices A, B, C, D, Qs, Rs, Ss 
and then converts them through an algebraic Riccati equation to the 
state-space innovation model object returned as the function output.

xk 1+ Axk Buk wk+ +=

yk Cxk Duk vk+ +=

E
wk
vk 
 
 

wl
T vl

T
 
 

Qs Ss

Ss 
 

T

Rs
δkl 0≥=



Chapter 3 Identification Algorithms

© National Instruments Corporation 3-19 Xmath Interactive System Identification Module, Part 1

Subspace algorithms typically make extensive use of block Hankel 
matrices. Input and output block Hankel matrices are defined as:

The subscripts of U and Y denote the subscript of the first and last element 
of the first column. Furthermore, define Γi (the extended observability 
matrix) and  as:

For simplicity of notation, let us introduce the following:

The definition of projection of the row space of A onto the row space of B 
can be expressed in matrix form as A/B = A BT (B BT)-1 B. Using these 
definitions, it can be proven that

(3-13)

U0 i 1–

u0 u1 u2 ... uj 1–

u1 u2 u3 ... uj
... ... ... ... ...
ui 1– ui ui 1+ ... ui j 2–+

=

Y0 i 1–

y0 y1 y ... yj 1–

y1 y2 y3 ... yj
... ... ... ... ...
yi 1– yi yi 1+ ... yi j 2–+

=

Hdi

Γi

C
CA
...

CAi 1–

            Hi
d

D 0 ... 0
CB D ... 0
... ... ... ...

CAi 2– CAi 3– B ... D

= =

f Yi 2i 1–= , p
U0 i 1–

Y0 i 1–

,= u Ui 2 i 1–=

f u⊥⁄ p u⊥⁄ p u⊥⁄ 
  p u⊥⁄ 

 
T

1–

p ΓiX̃i=



Chapter 3 Identification Algorithms

Xmath Interactive System Identification Module, Part 1 3-20 ni.com

(3-14)

Equation 3-13 is the same as the oblique projection of the row space of f 
along the row space of u on the row space of p [VODM1, VODM2]. The 
matrix  denotes a sequence of non-steady-state Kalman filter states,

and thus contains information about both the deterministic and stochastic 
part of the state space innovation model. Equation 3-14 can be derived from 
Equation 3-13.

Determining the Observability Matrix and the Order
The determination of the observability matrix Γi and the order n 
from input-output data can be done on a scaling-dependent or 
scaling-independent basis. The term scaling refers to scaling the 
input and/or output data—for example, to correspond with different 
units or sensors. In sds( ), the scaling sensitivity is determined by the 
keyword {basis}, which can be set to combined or unscaled.

Dependent Scaling
Taking a singular value decomposition of Equation 3-13,

(3-15)

we find that the number of singular values significantly different from zero 
(expressed as ) is equal to the model order. sds( ) plots these singular 
values when {basis="combined"}. We also find from Equation 3-13 
that Γi can be set equal to .

The reason for this choice of Γi is that it determines the state-space basis of 
the identified model. With this basis, the system is in frequency weighted 
balanced form (frequency-weighting by the spectrum of the input) [Enns].

f u⊥⁄ 
  f u⊥⁄ 

 
T 1– 2⁄

f u⊥⁄ p u⊥⁄
T

p u⊥⁄ 
  p u⊥⁄ 

 
T 1–

p u⊥⁄•

f u⊥⁄ 
  f u⊥⁄ 

 
T 1– 2⁄

ΓiX̃i u
⊥⁄=

X̃i

X̃i x̃i x̃i 1+ ... x̃i j 1–+
=

f u⊥⁄ p u⊥⁄
T

p u⊥⁄ 
  p u⊥⁄ 

 
T 1–

p U1
c U2

c S1
c 0

0 S2
c 0≅

Vc
T

=

S1
c

Ui
c Si

c( )1/2 a



Chapter 3 Identification Algorithms

© National Instruments Corporation 3-21 Xmath Interactive System Identification Module, Part 1

Independent Scaling
With the singular value decomposition of Equation 3-14,

we find once again that the number of singular values significantly different 
from zero (expressed as ) is equal to the model order. Moreover, these 
singular values are the cosines of the principal angles between  and 

, so they are all smaller than one. When {basis="unscaled"} in 
sds( ), these angles (the arc cosines of the elements of ) are plotted. 
The system order is equal to the number of principal angles significantly 
different from 90°.

We also find from Equation 3-14 that Γi can be set equal to 

It can be shown that scaling the inputs uk or outputs yk has no effect on the 
results. This algorithm is very similar to the algorithm in [LARI2].

All formulas, such as Equation 3-13 and Equation 3-14, are presented in 
a mathematically convenient way. The implementation within sds( ), 
however, uses numerically reliable methods (particularly, the QR 
decomposition and SVD) to evaluate the formulas.

Determining the State-Space System
The state-space system can be determined from the input-output data Γi  and 
n using either an asymptotically biased or unbiased method. Both biased 
and unbiased algorithms are implemented in sds( ), but the biased 
algorithm often gives better results than the unbiased algorithm on real 
data. The keyword {bias} in sds( ) determines which method is used. 
For a detailed analysis, refer to [VODM1, VODM2].

f u⊥⁄ 
  f u⊥⁄ 

 
T 1– 2⁄

f u⊥⁄ p u⊥⁄
T

p u⊥⁄ 
  p u⊥⁄ 

 
T 1–

p u⊥⁄•

U1
u U2

u S1
u 0

0 S2
u 0≅

Vu
T

=

S1
u

p u⊥⁄
f u⊥⁄

S1
u

f u⊥⁄ 
  f u⊥⁄ 

 
T

1 2⁄

U1
u S1

u( )
1 2⁄



Chapter 3 Identification Algorithms

Xmath Interactive System Identification Module, Part 1 3-22 ni.com

The unbiased approach is based on the following steps:

1. Determine the projections:

2. Determine Γi and the order n as described before (sensitive/insensitive 
scaling). Make , where the underbar denotes deleting the 
last l (number of outputs) rows.

3. Determine the least-squares solution, where ρ1 and ρ2 are residuals:

4. The system matrices are determined as follows:

B, D follow from A, C, K12, and K22 through a set of linear equations:

Biased State-Space System Determination Method
The biased algorithm asymptotically calculates a slightly biased 
representation of the state-space model. The bias is zero if at least 
one of the following conditions is satisfied:

• The outputs are not corrupted by noise.

• The inputs uk are independent, zero mean, white noise sequences.

• The block Hankel matrices are double infinite (i → ∞).

Zi Yi 2i 1–

U0 i 1–

Ui 2i 1–

Y0 i 1–

⁄= Zi 1+ Yi 1+ 2i 1–

U0 i

Ui 1 2 i 1–+

Y0 i

⁄=

Γi 1– Γi=

Γi 1–
� Zi 1+

Yi i

K11K12

K21K22

Γi
�Zi

Ui 2i 1–

ρ1

ρ2

+=

A K11←

A K21←

QS Ss

Ss 
 

T

Rs
←1
j
---

ρ1ρ1
T ρ1ρ2

T

ρ2ρ1
T ρ2ρ2

T



Chapter 3 Identification Algorithms

© National Instruments Corporation 3-23 Xmath Interactive System Identification Module, Part 1

A nonzero bias depends on the convergence (as a function of i) of the 
non-steady-state Kalman filter of the system that generated the data. 
Whenever i is large enough, the bias can be neglected [VODM1, VODM2].

This approach is implemented as follows:

1. Determine the oblique projection Oi as the projection of the row 
space of Yi | 2i –1 along the row space of Ui | 2i – 1 onto the row space of 

. This corresponds to Equation 3-13. Also determine 
the oblique projection Oi+1 as the projection of the row space of 
Yi + 1|2i – 1 along the row space of Ui + 1|2i – 1 onto the row space of 

.

2. Determine Γi and the order n as described before (scaling sensitive or 
insensitive) Put , where the underbar denotes deleting as 
many rows as there are outputs.

3. Determine the states  and :

4. Determine the least squares solution:

5. The system matrices are determined as follows:

Subspace Identification of Stochastic Systems
The sst( ) function for subspace stochastic (SST) identification 
estimates stochastic state-space models from output data. With white 
noise applied to the input of the identified system, the output generated has 
approximately the same second-order statistics as the original output data 
used in the identification. While, in principle, this would be possible by 
passing a zero input vector to sds( ), the stochastic identification problem 

(U0 i 1–
T Y0 i 1–

T )T

(U0 i 1–
T Y0 i 1–

T ) T–

Γi 1– Γi=

X̃i X̃i 1–

X̃i Γi
�Oi= X̃i 1+ Γi 1–

� Oi 1+=

X̃i 1+

Yi i
-----------

L11L12

L21L22
---------------

X̃i
Ui i
--------

ρ1

ρ2
-----+=

A B
C D

L11L12

L21L22
---------------←

QS Ss

Ss 
 

T

Rs
←1
j
---

ρ1ρ1
T ρ1ρ2

T

ρ2ρ1
T ρ2ρ2

T



Chapter 3 Identification Algorithms

Xmath Interactive System Identification Module, Part 1 3-24 ni.com

is implemented as a separate function for computational and practical 
reasons. This section provides a basic overview of the sst( ) algorithm. 
For further details, refer to the references listed in the Appendix D, 
Bibliography.

Assume the input-output data is generated by the system:

with

and , , , .

The output vectors  are measured.  and , on 
the other hand, are unmeasurable, Gaussian distributed, zero mean, white 
noise vector sequences. {A,C} is assumed to be observable, while 
{A,(Qs)1/2} is assumed to be controllable.

Define ∆i as,

with

However, with

yk Cxk vk+=

xk 1+ Axk wk+=

E
wk
vk 
 
 

wl
T vl

T( ) Qs Ss

Ss( )
T
Rs

δkl 0≥=

A Qs, Rn n×∈ C Rl n×∈ Ss Rn 1×∈ Rs Rl l×∈

yk Rl l×∈ vk Rl l×∈ wk Rm 1×∈

∆i Ai 1– ... AG G( )=

Λ0 CPCT Rs+=

G APCT Ss+=

P APTT Qs+=

f Yi 2 i 1–= p, T0 i 1–=



Chapter 3 Identification Algorithms

© National Instruments Corporation 3-25 Xmath Interactive System Identification Module, Part 1

we find 

(3-16)

(3-17)

[VODM1, VODM2].

Determining the Observability Matrix and the Order
Determining the observability matrix Γi and the model order n is the same 
for sst( ) and sds( ). The scaling-sensitive case from Equation 3-16 
corresponds to the unweighted principal component algorithm in [ARUN]. 
The scaling-insensitive case, Equation 3-17 corresponds to the canonical 
correlation approach of [VODM1, VODM2, and ARUN].

Determining the State-Space System for SST
To ensure positive realness of the identified covariance sequence, the 
system matrices are determined in a slightly asymptotically biased way. 
[VODM1, VODM2] describe a method to avoid this bias, but it does not 
necessarily lead to a positive real covariance sequence, which would imply 
that the innovation model cannot be calculated. Once again, as for sds( ), 
the bias is a function of the convergence (as a function of i) of the 
non-steady-state Kalman filter [VODM1, VODM2]. When i is large 
enough, the bias can be neglected. For most practical purposes, i ≥ 10 
is sufficient.

1. Determine the projections: 

2. Determine Γi and the order n as described in the Determining the 
Observability Matrix and the Order section (scaling sensitive or 
insensitive). Put  (where the underbar denotes deleting 
the last l (number of outputs) rows).

f
p

fft[ ]
1– 2⁄

ppt[ ]
1–

=

p ΓiX̃i=

fft[ ]
1– 2⁄

fpt[ ] ppt[ ]
1–
p fft[ ]

1– 2⁄
ΓiX̃i=

Zi
Yi 2i 1–

Y0 i 1–

----------------= Zi 1+

Yi 1+ 2i 1–

Y0 i
----------------------=

Γi 1– Γi=



Chapter 3 Identification Algorithms

Xmath Interactive System Identification Module, Part 1 3-26 ni.com

3. Determine the states  and  as follows:

4. Determine the least squares solution:

5. The system matrices are determined as follows:

Maximum Likelihood Method
The maxlike( ) function uses a Karmarkar-type algorithm to vary 
the parameters until the output from the parameterized system model 
minimizes a least-squares cost function of the difference between the 
measured and computed outputs. Denoting the estimated output based 
on the parameter vector p by , this cost function is:

(3-18)

Φ(p) is re-evaluated using a MathScript function that returns the output y 
for successive perturbations of p. The gradient of the cost is then computed 
with respect to the changes in each of the parameters. This makes it 
possible to compute the Jacobian of the cost with respect to the parameters 
(approximating the Hessian, or second derivative matrix) and indicates 
which parameters are most important. The parameters are then updated, 
and the process is repeated until the maximum number of iterations 
specified has been performed, or a minimum cost value is obtained 
(maxlike( ) reports convergence).

The problem given in Equation 3-18 is approached using a bounded “trust” 
region method to solve the quadratic suboptimization problem stated in 
Equation 3-20, thus obtaining a descent direction d. Using a linear 

X̃i X̃i 1+

X̃i Γi
�Oi=

X̃i 1+ X̃i 1+=

L21

Yi i

L11

L21

X̃i
ρi
ρ2

+=

A

C

L11

L21

←
Qs Ss

Ss 
 

t

Rs
Rs

ρ1ρ1
T ρ1ρ1

T

ρ2ρ1
T ρ2ρ2

T
←

ŷ p( )

Φ p( ) ŷ p( ) y–
2
2

=



Chapter 3 Identification Algorithms

© National Instruments Corporation 3-27 Xmath Interactive System Identification Module, Part 1

approximation for the function  at the current parameter value p0, 
we obtain:

(3-19)

where J0 is the Jacobian of . The Jacobian is calculated by perturbing 
the parameter p by δ = max(0.001,0.001 * |p|), and then calculating:

To find a search direction d that points toward the measured output y from 
a given y0, we can expand the expression as follows:

(3-20)

and find a d that minimizes Φ. If we set,

(3-21)

then it is evident that any d that minimizes Equation 3-20 must satisfy:

(3-22)

Unfortunately, Equation 3-22 does not have a solution d if JTJ is singular. 
To avoid this problem, the following problem is solved instead:

(3-23)

where I is an appropriately-sized identity matrix. Equation 3-23 always has 
a well-defined solution because [JTJ = µI] is a positive-definite matrix 
given that µ is a positive scalar. It can be shown that the solution to 
Equation 3-23 is a descent direction for Φ [GMW]. 

Once a search direction d is calculated, one needs to decide how far to go 
in that direction. A line search based on the bisection method is used to 
calculate the step size. The use of a line search, combined with the 

ŷ p0( )

ŷ p( ) ŷ p0( ) J0 ŷ p( ) ŷ p0( )–{ }+=

ŷ p0( )

J0
ŷ p0 δ+( ) ŷ p0( )–{ }

δ
------------------------------------------------=

Φ d( ) ŷ p0 d+( ) y–
2

2 y0 Jd y–+
2

2
= =

y0 y–
2
2 2y0

TJd dTJTy– dTJd+ +=

dd
dΦ 2JTy0 2JTy– 2JTJd+ 0= =

JTJ d JT y0 y–=

JT µI+ d JT y y0–[ ]=



Chapter 3 Identification Algorithms

Xmath Interactive System Identification Module, Part 1 3-28 ni.com

assurance that d is a descent direction, guarantees that the root sum of 
the squares of the output error (RSS)

monotonically decreases as k increases. In turn, this guarantees that the 
algorithm will converge to a minimum, although this might only be a 
locally minimal solution.

Extensive scaling is used in the implementation to ensure that the 
parameters do not become extremely large and that the algorithm is overall 
numerically well-conditioned. Furthermore, the range of µ used in the 
implementation (µ = 0.01) restricts the absolute changes in each parameter 
so that they do not exceed  at each iteration of k. This can be 
seen from Equation 3-23, defining σn(A) as the smallest singular value of 
the matrix A:

(3-24)

This limitation on the changes in the parameters keeps the optimization 
region limited.

If at all possible, it is good practice to get an idea of what the cost function 
RSS(p) looks like around the initial guess p0. A convex cost function is 
much easier to minimize than a jagged cost function with many valleys, 
where maxlike( ) is likely to yield a local minimum. Another way to 
avoid mistaking a local minimum for the global minimum is to try many 
different initial guesses and see if they all converge to the same solution.

A very common problem that even experienced users often encounter while 
solving an identification problem is the presence of redundant parameters 
in the model. This means that the problem’s solution is not unique. One way 
to identify the occurrence of this kind of problem is to calculate the rank of 
the JTJ matrix maxlike( ) returns. If the matrix is singular, you should 
try to eliminate one or more unnecessary parameters.

RSS pk( ) ŷ pk( ) y–=

k y ŷ p( )–

d JTJ µI+( )
1–
J' y ŷ–( ) JTJ µI+ JT y ŷ–≤=

1

σn J
TJ µI+

--------------------------------

 
 
 
  1

σn JT
----------------

 
 
 
 

y ŷ–
100

σn j( )
------------ y ŷ–≤≤



© National Instruments Corporation 4-1 Xmath Interactive System Identification Module, Part 1

4
Tutorial

This tutorial provides a hands-on introduction to the ISID command-line 
and interactive tools. Each section in this chapter deals with a specific 
identification approach and illustrates how to use the associated 
command-line and interactive tools.

Preparing to Use This Tutorial
Before beginning the tutorial, if you are a new user you should read the 
Tutorial Data and Graphical User Interface sections, which describe the 
general structure and use of ISID tools. Discussion of the interactive tools 
within the tutorial focuses on their algorithm-specific features. If you are 
not familiar with parameter dependent matrices (PDMs), you should first 
read the section on PDMs in Xmath User Guide. Although several ISID 
functions accept both PDMs and matrices as input parameters, PDMs are 
preferred because they contain additional information that is useful for 
simulation, plotting, and signal labeling. While we recommend that you 
peruse Chapter 3, Identification Algorithms, and the Xmath Help for more 
algorithm and syntax details, you do not need additional background on the 
algorithms to begin using the tutorial.

Because different identification methods are compared using the same 
data, this tutorial and the following chapter have the character of a mini 
introductory course in system identification.

Some general conventions are as follows:

• We do not present the full syntax of each function because it is 
available in the Xmath Help. The examples use the most common 
ways of calling these functions. When a particular operation can be 
accomplished either from the command line or through an interactive 
tool, an example is generally provided for both approaches. We focus 
in somewhat greater detail on the interactive examples, however, 
because the Xmath Help for each function provides additional 
command-line examples.

• Both in this chapter and elsewhere in the manual, we use acronyms for 
different algorithms. In several cases, these acronyms are used to 
represent both a mathematical approach and the function used to 



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-2 ni.com

implement it. The casing and font used are intended to clarify the 
reference. Acronyms are printed in upper case (LS, for least squares) 
and all function names are in monospace (for example, ls( ), the 
function based on the LS algorithm). All examples in this tutorial 
appear in monospace as well to indicate that they can be entered at the 
Xmath command line.

• The examples are oriented towards open-loop situations. The 
closed-loop case is much more complicated and requires various 
assumptions and conditions to be checked [AndGev], [Söd]. Empirical 
transfer function estimation, instrumental variables, and prediction 
error methods give asymptotically correct results if these conditions 
are met. Subspace-based solutions, however, do not.

Tutorial Data
You can run each section of the tutorial independently by first loading the 
tutorial data and then following the example text.

To obtain the data required, go to the command area and execute the demo 
file tut_datgen.ms:

execute file = "$XMATH/demos/tut_datgen.ms" 

This takes a few minutes.

You should immediately save the data to a location you will remember. The 
following example suggests a file named tut_data in the current 
directory.

save file = "tut_data"

To load the data, go to the Xmath Commands window command area and 
issue the load command:

load file = "tut_data.xmd"

This command assumes that the current directory is the directory in which 
you saved the data.

The model used to generate most of the data is a discretized version of a 
two-mode mechanical system. An additional model is provided for the 
stochastic subspace identification.



Chapter 4 Tutorial

© National Instruments Corporation 4-3 Xmath Interactive System Identification Module, Part 1

The variables generated are as follows:

• sys_true—Discrete-time Xmath system representing the true 
system. sys_true has two measured outputs and two measured 
inputs. In addition to this, white measurement noise is added to each 
output.

• g_true—PDM representing the frequency response of the true 
(discretized) system sys_true, computed over the 256-point 
frequency range f.

• f—Frequency range vector for g_true in Hz.

• dt—A scalar value indicating discretization interval in seconds (equal 
to period(sys_true)).

• y_prbs1, u_prbs1, y_prbs2, u_prbs2, y_ss1, u_ss1, y_ss2, 
u_ss2—Four pairs of output/input data used in the tutorial (wide band 
PRBS input, low band PRBS input, sine sweeps on inputs 1 and 2). All 
are PDMs with two channels corresponding to the two measured 
outputs and the two measured inputs, respectively.

• syssto_true—A state-space innovations model (list object). 
syssto_true has two inputs and two outputs.

• sdfsto_true—The frequency response (spectral density function) 
of syssto_true.

• covsto_true—The 20-second impulse response (covariance) of 
syssto_true.

• y_sto—The output response of syssto_true to Gaussian (zero 
mean and unity variance) noise input.

Graphical User Interface
The Xmath programmable GUI is an interface layer that allows you to 
create customized interfaces for solving design problems or performing 
analyses. GUI-based interactive interfaces are available to the major 
identification functions: ls( ), fwls( ), etfe( ), giv( ), irea( ), 
sds( ), sst( ), and val( ). Each function has an optional {gui} 
keyword that you can specify to invoke an interactive GUI-based tool for 
that particular identification scheme. This section describes the general 
principles underlying the GUI as they apply to the system identification 
problem. For information on the standard interface used for all the ISID 
interactive tools, refer to the General Features of ISID Interactive Tools 
section.



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-4 ni.com

Structure and Concept of the GUI
The MATRIXx Help provides detailed information on the structure of 
the GUI and its interface to Xmath, as well as a guide to programming 
GUI-based tools in Xmath.

When you instantiate a GUI-based identification tool, a special hidden 
partition with a name prefaced by an underscore is created and used to store 
all variables related to the identification. This means that even if you exit a 
GUI tool, you have the option of starting it up again later and continuing 
exactly where you left off because the data in the partition is not altered by 
non-GUI-based operations.

A brief description of the widgets used in this module is in order. Most 
users are familiar with pull-down menus, push buttons, and toggle buttons. 
Sliders resemble their real-world counterparts; use them for selecting a 
specific value from a preset range of values. The VarEdit widget is used 
widely in the ISID GUI tools. It resembles a push button with a label 
indicating a value; when selected with the mouse, it expands into a text 
entry area where you can type a new desired value.

Note You must press <Return> or <Enter> to update the widget and the associated Xmath 
variable; typing alone is not sufficient.

General Features of ISID Interactive Tools
All the interactive tools associated with identification routines have a 
similar interface. When you first invoke an interactive tool, a hidden 
partition named _routineName_gui is created to store variables 
pertaining to the tool (for example, _ls_gui, _sds_gui). The interactive 
tool for ls is shown in Figure 4-1.



Chapter 4 Tutorial

© National Instruments Corporation 4-5 Xmath Interactive System Identification Module, Part 1

Figure 4-1.  Interactive Tools for ls

The interactive tools consist of a menu bar near the top of the window, a 
plotting area, and additional modeling and validation selections below the 
plotting area.

Menus
Five menus (File, Algorithm, Validation, Plot, and Help) appear on the 
menu bar at the top of the window. The options under the File, Validation, 
and Plot menus are the same for all interactive tools, although some options 
may be grayed out if they are not relevant to the particular tool. The 
Algorithm options and the general help provided by the Help menu 
are specific to the identification function being used.



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-6 ni.com

For a number of menu options, a shortcut key binding is provided. Key 
bindings are shown on the menus as ^key, where ^ represents the 
<Ctrl> key.

Note Shortcut key bindings are available on UNIX systems only.

File Menu
The File menu contains the following options:

• Compare with Data—Brings up a dialog for you to enter a variable 
containing data (PDM or matrix in Xmath) compatible with the data in 
the current plot. Clicking OK on the dialog displays both the original 
data and the comparison data; a legend indicating the line-data 
correspondence appears in the upper-left corner of the display. You 
can enter data in the current partition by variable name only; enter data 
in other partitions in the form partitionName.variableName.

• Compare with Model—Brings up a dialog for you to enter a variable 
representing an Xmath or ISID system variable with the same number 
of inputs and outputs. Clicking OK in the dialog causes the current 
results to be recomputed for the comparison model. Both the original 
and comparison-model-based results are then displayed with a legend. 
You can enter models in the current partition by variable name; enter 
data in other partitions in the form partitionName.variableName.

• Save Plot»Xmath—Brings up a dialog in which you enter a variable 
name. The data currently being displayed in the tool is then saved to 
the current partition under the name you choose. If you want to save 
the plotted data in another partition, specify the name under which to 
save it in the form partitionName.variableName.

• Save Model»Xmath—Brings up a dialog in which you enter a 
variable name. The most recently updated model within the interactive 
session is then saved to the current partition under the name you 
choose. If you want to save the model in another partition, specify the 
name under which to save it in the form 
partitionName.variableName.

• Exit—Closes and exits the interactive tool. Selecting Close from the 
window manager menu also exits the tool.



Chapter 4 Tutorial

© National Instruments Corporation 4-7 Xmath Interactive System Identification Module, Part 1

Validation Menu
The Validation menu contains the following options:

• ViewInput-Output Data—Plots the input and output data originally 
provided to the identification routine. This can be particularly useful 
for identifying spurious data points or outliers.

• Prediction—Plots, on the same axes, the predicted output from the 
input data and the actual measured output. A cascading submenu 
allows you to select whether you want to view the prediction output 
based on an input-output model or on an innovations model.

• Prediction Errors—Plots the difference between the predicted output 
from the input data and the actual measured output. A cascading 
submenu allows you to select whether to view the prediction output 
based on an input-output model or on an innovations model.

• Covariance Pred. Err.—Plots the prediction error covariance as an 
(ny × ny) matrix of plots. A cascading submenu allows you to select 
whether to view the prediction output based on an input-output model 
or on an innovations model.

• Crosscorr. Input <–> Pred. Err.—Plots the cross correlation of the 
input and the (output) prediction error as an (ny × nu) matrix of plots. 
A cascading submenu allows you to select whether to view the 
prediction output based on an input-output model or on an innovations 
model.

• Frequency Response—This option submenus allow you to select 
whether to compute the input-output frequency response of the 
identified model or the spectral density function of the output noise 
model. In either case, you can then view the magnitude, phase, or 
singular values of the response depending on your selection from the 
submenu.

• Impulse Response—Plots either the system impulse response as an 
(ny × nu) plot matrix or the covariance of the output noise model, 
depending on your selection from the submenu.

• Poles and Transmission Zeros—Provides a plot of pole-zero 
locations in the imaginary plane for either the input-output 
(deterministic) model or the noise (stochastic) model, depending 
on your selection from the submenu. The location of the unit circle is 
shown as a solid line with *’s denoting pole locations and O’s denoting 
zero locations.

Caution If the function hits the memory limit, it will abort and re-identification of the data 
will be necessary.



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-8 ni.com

• Error Bounds—Computes the one-sigma error bounds on the 
frequency response of the identified system and plots them along with 
the actual frequency response. This option may require a relatively 
large amount of memory and computation time. Therefore, it is not 
always possible to use it with large models.

Plot Menu
The Plot menu allows you to customize the appearance of the plot display 
in the interactive tool, as well as obtain a hardcopy. It contains the 
following options:

• X-axis—A submenu allows you to switch the axis scaling between 
linear and logarithmic.

• Y-axis—A submenu allows you to switch the axis scaling between 
linear and logarithmic.

• Bar Graphs—A Yes/No submenu option allows you to switch from 
standard line plots to bar graphs.

• Date—A Yes/No submenu option allows you to display or suppress 
the date stamp in the upper right corner of the display.

• Texts/Hardcopy—Brings up a small window containing VarEdit 
widgets. The first VarEdit, Hardcopy to file, takes the name of a file 
in which you want the PostScript hardcopy of the current display to be 
saved. When you enter the filename and press the <Return> or <Enter> 
key, the file is automatically generated and stored in the current Xmath 
directory. The next two VarEdits allow you to change the text 
appearing at the upper left and bottom of the plot. The last VarEdit, 
GUI Plot Options, allows you to pass a valid uiPlot( ) option (for 
example, grid) to the plotted display in the tool. For more details on the 
valid uiPlot( ) options, consult the uiPlot topic in the Xmath Help.

Help Menu
The Help menu on the right end of the menu bar brings up a page of Help 
text describing all the facilities available from the GUI tool.

Modeling and Validation Selections
A RECOMPUTE button and a status (Ready) appear beneath the plot 
area, directly above the set of identification options particular to the 
routine. When you modify one of these options through the menus, buttons, 
or VarEdits provided, you should click RECOMPUTE to begin the 
updated identification. At this point the status changes from Ready to a 



Chapter 4 Tutorial

© National Instruments Corporation 4-9 Xmath Interactive System Identification Module, Part 1

status message indicating the type of recomputation taking place. When the 
computations are finished, the plot area is updated and status returns to 
Ready. A menu option to perform a recomputation also appears in the 
Algorithm menu.

Beneath the RECOMPUTE button and the status message is a set of 
options, toggle buttons, and VarEdit widgets that allow you to change the 
identification-specific parameters or options. These are discussed in 
conjunction with the particular identification functions.

The bottom line always shows the following parameters: sampling interval 
in seconds, the Nyquist frequency in Hertz, and the number of data points 
used for the identification.

You can close all windows using the default window manager menu, 
although all the interactive tools also have Exit options under the File 
menu. When you close an interactive tool, the partition that was created 
with it is not destroyed. Therefore, you can restart an interactive session by 
calling the identification function with empty parentheses and no input 
arguments; the data last used with the interactive tool is reloaded. If you 
start an interactive tool by calling the associated identification with new 
inputs, the information displayed in the tool reflects the model obtained 
from the new inputs. If an instance of the interactive tool for a function 
already exists, subsequent calls to that function with the {gui} keyword 
cause the first tool to close before the newest one is displayed on the screen.

The output of a function call including the {gui} keyword (bringing up an 
interactive tool) is fixed; the value of the output variable is not changed with 
later interactive modifications. Successive data and models obtained 
through an interactive tool are stored only in the _routineName_gui 
partition and can be overwritten with the next interactive change you make 
in the tool. To save the current model or data displayed in the tool, you must 
save it explicitly by selecting File»Save Plot»Xmath or File»Save 
Model»Xmath.

Graphics Utilities for GUI Tools
The graphics in the plot area are not based on the default Xmath graphics 
available from the command line, but are a GUI facility (as described in the 
Xmath Help under uiPlot( )). They are not interactive but can be 
modified substantially through the Plot menu options. Default features 
common to these and other uiPlot( )-based plots are the magnifying 
glass that appears over a portion of the plot when the middle mouse button 
is held down and the data value indicator box that appears when you 



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-10 ni.com

position the cursor on the plotted line and hold down the right mouse 
button. As you hold the right mouse button down and move along a line, 
the information about the data corresponding to that line is updated point 
by point. This is termed data viewing.

A lasso plot facility is available with all plots created with ISID functions. 
This allows you to zoom in on a particular section of the plot that you would 
like to see in more detail. To do this, press the <Ctrl> key and, with the left 
mouse button, click-and-drag a rectangular section within a given plot. 
(Light lines appear showing the region currently being selected.) When 
you release the button, the plot is regenerated showing a zoom plot of the 
selected area. Clicking the zoomed plot restores the normal view.

Another special plot facility is mtxplt( ). This function is a matrix plot 
utility particularly suited to plotting multivariable system data in an 
attractive format; all the ISID GUI tools call mtxplt( ) internally. A 
typical use of mtxplt( ) is to display the frequency response at each 
system output due to a particular signal at each input. In such a case, the 
matrix of plots has as many rows as system outputs and as many columns 
as system inputs; consequently, the plot in the (1,2) location corresponds to 
the response at output 1 of the system to input 2. If you hold the control key 
down and single-click on a subplot it expands for closer examination. Hold 
down the <Ctrl> key and click the enlarged subplot to re-display the full 
matrix of plots.

You also can call mtxplt( ) from the command line using its numerous 
keywords to specify the plot appearance you want. In this case a separate 
mtxplt( ) Plot window appears. mtxplt( ) is implemented as a 
MathScript function so that while users may enter expressions as input 
arguments, it returns a NULL value. For this reason, If you call mtxplt( ) 
without assigning its output to a variable, the message No match appears 
in the status area and ans is NULL is written to the output log.

Least-Squares in the Time Domain
The least-squares approach is implemented in the ls( ) function. You 
can call ls( ) completely from the command line, or you can use the 
associated interactive tool to change or validate the model. Other 
commands illustrated in this section are ls2var( ), ls2unc( ), 
and lsjoin( ).

If you have not already done so, load the data you created in the Tutorial 
Data section.



Chapter 4 Tutorial

© National Instruments Corporation 4-11 Xmath Interactive System Identification Module, Part 1

We’re interested in the system response to a pseudo-random binary input 
signal (PRBS). We begin by invoking ls( ) in this example with a 
maximum model order of 20. This means that all models of lower order 
(less than 20) can be obtained from the LS square root without having to 
re-identify the data. Define the data matrices, and call ls( ) with a 
minimum number of arguments:

nmax = 20;

[sys20, sr] = ls(y_prbs2,u_prbs2,nmax)

Using the default noninteractive syntax for ls( ), this call returns sys20, 
a 20th-order Xmath system. The second output, sr, is the LS square root 
for model orders up to nmax. It also is represented as a list whose structure 
is discussed in Appendix A, List Data Structures.

As the model input and output data are processed, brief messages indicating 
how many data samples have been processed appear in the log area of the 
Xmath Commands window. This provides a status check when you are 
processing large amounts of data. 

Using the same data, we now want to obtain the 10th-order least squares 
model:

n = 10;

[sys10] = ls(sr,n)

The desired model order (n) must not exceed nmax, the maximum order 
with which sr was created. Identifying a lower-order model from a 
previously-computed square root takes much less computation time than 
directly identifying models from input and output data.

Interactive LS Tool
We continue with the ls( ) call, this time invoking the {gui} keyword 
to bring up the interactive tool. We also can use the {yval} and {uval} 
keywords to specify validation data sets to be used in conjunction with the 
tool. This validation set feature is unique to the ls( ) function; it was 
implemented mainly because of the ease of computation using LS square 
roots. We use the wide-band PRBS data for validation:

sys20 = ls(y_prbs2,u_prbs2, 20, 

{gui,yval=y_prbs1,uval=u_prbs1});



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-12 ni.com

The ls( ) interactive tool comes up displaying the diagonal terms of the 
prediction error variance matrix for all orders up to the maximum (refer to 
Figure 4-2).

Figure 4-2.  ls Error Variances

As described in the Menus section, only the options under the Algorithm 
menu are unique to the ls( ) interactive tool; options on other menus are 
common to all tools.

In Figure 4-2, the error norms show a gradual decline as a function of ARX 
order. It is interesting to see what happens in terms of frequency response 
for increasing model order. To look at the frequency response for orders 
4, 8, and 12, enter [4,8,12] for Order A polynomial; remember to 
press <Return> or <Enter>. (Xmath places this value in Order B 
polynomial also.) Then select Validation»Frequency Response»
Input - Output model (Magnitude). The new model is identified, and the 
response is plotted for each order as shown in Figure 4-3.



Chapter 4 Tutorial

© National Instruments Corporation 4-13 Xmath Interactive System Identification Module, Part 1

Figure 4-3.  4th, 8th, and 12th Order Model Frequency Responses

Judging from the difference in response for frequencies higher than 0.1 Hz, 
we might suspect that the fourth-order model does not have a sufficiently 
high order to model the noise. We can investigate that by comparing the 
spectral density function of the prediction errors of ARX models of orders 
4 and 20. To do this, reset Order A (and B) polynomial to 4, and then 
select Algorithm»SDF prediction errors»Magnitude to generate 
Figure 4-4.



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-14 ni.com

Figure 4-4.  SDF Prediction Errors for Fourth-Order Model

Replace the 4 with 20, and click RECOMPUTE to obtain the spectral 
density function of the prediction errors for the 20th-order model. (Vector 
input for the model orders is not supported with spectral density function 
plots and error bound plots for ease in reading the resulting plots.) We 
observe that the prediction errors of the 20th order have a much flatter SDF 
and are therefore whiter (plot not shown). Since the frequency responses do 
not change much beyond order eight, let us select the eighth-order model 
as our final candidate (entering 8 as the Order A (and B) polynomial 
values) and look at its frequency response uncertainty by selecting 
Validation»Error Bounds. This uncertainty is based on conversion of 
the parameter variance to a pointwise frequency response variance and can 
therefore be interpreted as a one-sigma bound.

The resulting plot, shown in Figure 4-5, displays three lines: the middle line 
is the 8th-order frequency response, while the others have the standard 
deviation added to and subtracted from it. The model error estimate is large 
for the higher frequencies, which agrees perfectly with the low coherences 
that you can see in the Empirical Transfer Function Estimation section.



Chapter 4 Tutorial

© National Instruments Corporation 4-15 Xmath Interactive System Identification Module, Part 1

Figure 4-5.  Eighth-Order Model Error Estimate

_ls_gui.sys is updated whenever you change or recompute the system 
model. When you exit the interactive tool by selecting File»Exit, 
_ls_gui.sys corresponds to the last model that was identified; in this 
case, it is an eighth-order model. (The original 20th-order system model 
returned by the call to ls( ), sys20, remains in your current working 
partition and is not affected by subsequent interactive modifications.) This, 
in turn, corresponds to a 16th-order state-space model. The model order can 
be reduced significantly by fwls( ) or irea( ) as we will see. We can 
store the eighth-order model for future use as a regular Xmath system; do 
this using the File»Save Model»Xmath, and save the model as sys8.

Because we have the true system model, we can now compare its frequency 
response to that of the eighth-order backward polynomial model. First, 
select Validation»Frequency Response»Input - Output Model 
(Magnitude). Then select File»Compare With Model and specify 
main.sys_true as the model with which to compare. This action displays 
the magnitude frequency response of both systems with a legend. The 
comparison with the true model is shown in Figure 4-6. Notice how good 



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-16 ni.com

the fit is up to 0.1 Hz and that the mismatch beyond this frequency is 
consistent with the error band that we have seen before.

Figure 4-6.  Comparison of Eighth-Order LS Versus True Models

Filtering
Often data filtering is useful to emphasize the data contents in a certain 
frequency band. This results in a better model quality inside that band. This 
section illustrates how to filter the data for our example, where we know 
that the bandwidth of the input sequence is 0.125 Hz.

Here we use the filter design functions included in the Xmath core to create 
an eighth-order lowpass Butterworth filter with no more than 0.1 dB ripple 
in the passband and a cutoff frequency of 0.125 Hz. For a complete listing 
of the available filter design functions, refer to the Xmath Help.

blpfilt = buttconstr({fixOrder=8,

Fpass = 0.125,dt = dt, lowPass, dBpass=.1});

y_filt = filter(y_prbs2,blpfilt);

u_filt = filter(u_prbs2,blpfilt);



Chapter 4 Tutorial

© National Instruments Corporation 4-17 Xmath Interactive System Identification Module, Part 1

We can then perform the identification on the filtered data and compute its 
frequency response:

sys_filt = ls(y_filt,u_filt,4);

g_filt = freq(sys_filt,f);

Reusing the information from the 20th-order square root object sr, which 
was computed using unfiltered data, we can get the fourth-order response:

sys_unfilt = ls(sr,4);

g_unfilt = freq(sys_unfilt,f);

We compute the responses using mtxplt( ). The first instruction assigns 
a string to a variable name; the desired label is too long to fit in this 
document so we append two strings:

strng="4th-order ls filtered estimate (solid), "+...

"true model (dashed), unfiltered estimate 

(dot-dashed)"?

mtxplt([abs(g_filt), abs(g_true(1:2, 

1:2)),abs(g_unfilt)],

{y_log,columns=2,y_lab=["Output 1","Output 2"],

x_lab=["Input 1","Input 2"],axtxt="Frequency (Hz)",

bottxt=strng})?

This mtxplt( ) function produces Figure 4-7, which illustrates that 
filtering can substantially reduce the model order required for a good fit.



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-18 ni.com

Figure 4-7.  Comparison of Fourth Order LS (Filtered Data) Versus True Models

Square Root Based Cross Validation
The main problem with obtaining an LS model is choosing the order. When 
the order is too low, not all relevant dynamics can be modeled. When the 
order is too high, we are fitting parameters to noise, which causes the 
results to deteriorate significantly. Because ls is a prediction error method, 
we have to base the choice of order on the prediction error characteristics 
for different model orders. This can be done by looking at their norm in the 
first place. The function ls2var( ) returns the norm of the prediction 
error variances (one for each output) from the square root object.

The syntax is var = ls2var(sr).

This is the simplest form of using ls2var,( ) where the prediction error 
norms are computed for the same data set that was used to obtain sr and 
the parameter estimates. We have seen the results already in Figure 4-2. 



Chapter 4 Tutorial

© National Instruments Corporation 4-19 Xmath Interactive System Identification Module, Part 1

We also can get a graphical presentation of the value of the norm through 
the GUI.

If you exited the GUI at the end of the last section, you can restart it by 
typing:

ls()

Xmath automatically reloads the most-recently performed identification 
whose results are still in the _ls_gui partition. Selecting Algorithm»
Error norms returns a plot of the value of the norms as a function of the 
model order up to the maximum model order listed in the square root 
object.

Whether you call ls2var( ) directly or through the GUI interface, 
wherever possible model validation based on prediction errors should be 
done on a separate (statistically independent) validation data set. To see 
why this is necessary, consider the following.

As the model order increases, the prediction errors become smaller by 
definition of the least-squares estimate. They eventually become zero when 
we continue adding parameters. However, the parameters are fitted to noise 
and the model performs badly on any other data set.

To illustrate this phenomenon, consider the following example of 
ls2var( ), which is now used to produce the prediction error norms on a 
validation data set based on models from the identification data set. The 
computation takes place based on square roots only. We identify a model 
over the first 1,024 data points and validate them over the next 1,024, up to 
model order 20.

nmax = 20;[,sri]=ls(y_prbs2(1:1024),u_prbs2(1:1024), 

nmax);

[,srv]=ls(y_prbs2(1025:2048),

u_prbs2(1025:2048),nmax);

var = ls2var(sri,{srval = srv})?

Looking at the two columns of var (one corresponding to each output) to 
see at what order the norms converge, the results are quite revealing. For the 
first output, the seventh-order model is optimal; for the second output, the 
ninth-order model is the best. An inspection of the frequency responses of 
these models indicates that these models are indeed the best ones. This type 
of cross validation is recommended because it can be done very efficiently 
and the model order is the most important ls( ) parameter.



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-20 ni.com

Alternatively, this step can be accomplished through the interactive tool 
using the validation data directly or the square root object for the validation 
data set (srv).

• If you already have the validation square root srv, type:

[sysi,sri] = ls(y_prbs2(1:1024),

u_prbs2(1:1024),20,{srval = srv, gui})

• If you do not have the validation square root, you can specify the input 
and output validation data explicitly by calling ls( ) with the 
{yval} and {uval} keywords. You can only use these keywords 
in conjunction with the {gui} keyword and the interactive tool. 
This syntax is:

[sysi,sri] = ls(y_prbs2(1:1024),

u_prbs2(1:1024),20,{yval=y_prbs2(1025:2048),

uval=u_prbs2(1025:2048),gui})

The ls GUI pops up, displaying the error norms first.

Model Uncertainty Estimates
The model uncertainty displayed by ls( ) can be obtained using the 
ls2unc( ) function, which returns both the model frequency response 
and the one-sigma frequency response confidence intervals as a function of 
frequency. Here we call it with the square root object sr and an order of 8, 
as well as specifying a frequency range vector in Hz.

f_unc = 0.0025:(0.25-0.0025)/199:0.25

[g,deltag] = ls2unc(8,sr,f_unc)

The relative frequency response model error is then defined by 
deltag/abs(g).

As described in the Interactive LS Tool section, we can use the 
Validation»Error Bounds option within the interactive tool to obtain 
a graphical display of the model frequency response with the standard 
deviation added to and subtracted from it.

Whether we call ls2unc( ) from the command line or through the 
interactive tool, the results indicate that the relative model errors are large 
only for those frequencies corresponding to a small system response. 
We can therefore conclude that the model quality is good.



Chapter 4 Tutorial

© National Instruments Corporation 4-21 Xmath Interactive System Identification Module, Part 1

Combining Data Sets with lsjoin
The square root objects are particularly useful in cases where several data 
sets are available and you want to estimate one model based on all data sets. 
As an example, we can use the data sets y_ss1, u_ss1 and y_ss2, u_ss2. 
These data sets were generated with a sine sweep on inputs 1 and 2, 
respectively. The sine sweep covers the frequency band from 0 to 0.125 Hz. 
Each of these data sets contains enough information to identify a model 
with one input only. Of course, we could identify two models and combine 
the resulting models in state-space form using the + system operator, but 
that would lead to a much higher dimensional state-space model than 
required. A better way is to compute the LS square roots of both data sets 
and combine them through a command-line call to the lsjoin( ) 
function. In this particular call to ls( ), we omit the first ls( ) output 
(a system model), since all we want is the second output (the square root 
object).

nmax = 8;

f_join = 0.0025:(0.25-0.0025)/199:0.25;

[,sr1] = ls(y_ss1,u_ss1,nmax);

[,sr2] = ls(y_ss2,u_ss2,nmax);

[sr12] = lsjoin(sr1,sr2)

To obtain the frequency response g12 directly from the square root we need 
to re-create a system model using ls( ) and then pass it to idfreq( ):

[g12,sdf_n] = idfreq(ls(sr12,nmax),f_join)

Within the LS interactive tool, we can then plot the frequency response 
of this eighth-order model together with the frequency response of the 
eighth-order LS model obtained earlier. Select Validation»Frequency 
Response»Input - Output model (Magnitude). Select File»Compare 
With Data, and enter g12 in the dialog. The results are characteristic for 
this type of input signal. The frequency response of the sine sweep model 
matches that of the pseudo-random data-based (PRBS) model well up to 
the bandwidth of the input and becomes much larger beyond that. This is 
apparently caused by the fact that the sine sweep contains no input power 
at all beyond 0.125 Hz, whereas the PRBS input still has some power in that 
region.

A frequently observed phenomenon is that high-order least-squares 
estimates overestimate the frequency response magnitude in those regions 
where the signal-to-noise ratio is poor. This holds for the PRBS model to a 
lesser extent as well, as we have seen from the comparison between the true 
system and the eighth-order LS model in Figure 4-6. The best way to obtain 
the final model is to perform model reduction based on those frequencies 



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-22 ni.com

where the signal-to-noise ratio is good. The Signal Analysis section 
provides further discussion on how we can obtain an impression of the 
signal-to-noise ratios. Frequency domain model reduction is covered in 
the Least Squares in the Frequency Domain section, which details the 
fwls( ) function. Alternatively, you can use irea( ) for impulse 
realization (refer to the Impulse Realization section). This function does 
not explicitly deal with frequency domain information but often gives good 
results.

SVD-Based Solutions
You can obtain a different kind of least-squares solution through 
the singular value decomposition (refer to the Singular Value-Based 
Solutions section of Chapter 3, Identification Algorithms). This option is 
implemented in ls( ) through the {nsvd=n} keyword. With this syntax, 
nsvd should be set equal to the number n of singular values you plan to 
keep. The n largest singular values are retained and used in the solution 
while the rest are set to zero. The ls interactive tool provides an effective 
graphic to display the singular values and can be useful in determining how 
many you should retain.

To illustrate using the PRBS data:

[syssv] = ls(y_prbs2,u_prbs2,8,{nsvd = 10, gui})

When the interactive tool appears, the SVD solution toggle button is 
enabled. Select Algorithm»SV Selection to bring up a bar plot showing the 
singular values. You can then change the number of singular values to be 
retained, modify the Number of SV’s, and then click RECOMPUTE.

Least Squares with Scalar Denominator
Using the {scden} keyword, you can specify that a system model with a 
scalar denominator be used; for more details, refer to the Least Squares 
with Scalar Denominator section of Chapter 3, Identification Algorithms. 
To illustrate briefly using a fourth-order model: 

syssd = ls(y_prbs2,u_prbs2,4,{scden}) 

Examining the polynomial of the syssd list with

syssd(5) 

illustrates that the denominator matrix polynomials are structured as scalar 
multiples of identity matrices.

To recompute a model currently displayed through the ls interactive tool, 
enable the Scalar Denominator checkbox, and click RECOMPUTE.



Chapter 4 Tutorial

© National Instruments Corporation 4-23 Xmath Interactive System Identification Module, Part 1

Lattice-Based Least Squares
Use of the {lattice} keyword in ls( ) indicates that a special 
lattice-based algorithm should be used rather than the approach described 
in the Least Squares for ARX Models section of Chapter 3, Identification 
Algorithms. In spite of the efficiency of the default ls( ) algorithm, this 
alternate method is valuable because we are often forced to identify 
high-order models due to the limited noise modeling capacity of the default 
ls( ) algorithm. If we define n as the ARX model order, then the 
computational work of ls( ) is proportional to n2. For large problems, the 
lattice algorithm offers an order n alternative. It requires significantly less 
computational work than does the default ls( ) algorithm for high model 
orders and may be the only practical algorithm for large problems that 
exceed your memory limitations. It computes only the top block row of the 
square root object. From this matrix, the square root can be recomputed 
along with the model parameters.

All other ls-associated options and keywords discussed in this section, 
including the interactive syntax, can use the {lattice} keyword. Square 
root objects generated with both ls algorithms are compatible and can be 
combined using lsjoin( ).

Although the lattice functions have all been implemented in square root 
form, there might be numerical problems associated with downdate 
operations. In that case, warnings are issued, and the results may be 
unreliable. However, in most cases with full-rank additional output noise, 
this does not happen and the lattice-based models are just as good as those 
obtained by the default algorithm.

To illustrate:

[sys8,sr] = ls(y_prbs2,u_prbs2,8) 

[sys8lat,srlat] = ls(y_prbs2,u_prbs2,8,{lattice})

Select File»Compare With Model option to load in sys8lat while 
viewing the frequency or impulse response in the interactive ls( ) tool. 
The response of the system models is indistinguishable.



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-24 ni.com

Subspace Identification of Deterministic-Stochastic 
Systems

The subspace identification function sds( ) returns a state-space model 
from input and output data. Refer to the Subspace Identification Methods 
section of Chapter 3, Identification Algorithms, for a general discussion of 
subspace methods; sds( ) is described in more specific detail in the 
Combined Deterministic-Stochastic Systems section of Chapter 3, 
Identification Algorithms.

If you have not already done so, load the data you created in the Tutorial 
Data section. Call sds( ) with the {gui} keyword to invoke the 
associated interactive tool:

[sys_sds,sr_sds] = sds(y_prbs2,u_prbs2,{gui}) 

Alternatively, if you call sds( ) without the {gui} keyword and specify 
no model order, a bar plot of singular values is generated in the Xmath 
Graphics window, shown in Figure 4-8, and a popup queries you for the 
order of the model to be identified.

The sds( ) interactive tool displaying a bar plot of the system singular 
values similar to Figure 4-8 appears. You can input Model Order to 
regenerate the bar plot of singular values or principal angles shown when 
the interactive tool is first instantiated. The Model Order is initialized to 0. 
Examining Figure 4-8, we see that there are four dominant singular values 
and thus enter 4 as the Model Order.



Chapter 4 Tutorial

© National Instruments Corporation 4-25 Xmath Interactive System Identification Module, Part 1

Figure 4-8.  Subspace System Singular Values

By selecting Validation»Frequency Response»Input - Output model 
(Magnitude), you generate the frequency response magnitude of the 
model. To compare the identified model to the true model, select 
File»Compare with Data and specify g_true in the dialog. The 
results are shown in Figure 4-9. Observe that the fit is very good for 
low frequencies.



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-26 ni.com

Figure 4-9.  Comparison of Fourth-Order Model Frequency Response and 
True System Frequency Response

Like ls( ), sds( ) optionally generates a square root (sr_sds). In fact, 
the square root object from sds( ) is identical to that created by ls( ) 
(with , where nA and nB represent the order of 
the A and B polynomials and nbr, the number of block Hankel rows). 
This means that square roots from ls can be passed directly to sds and 
vice-versa. You can easily generate all models of order less than 
ny × (nbr – 1), where ny is the number of system outputs.

To identify a second-order model on the same data, change the Model 
Order to 2 and click RECOMPUTE. This identification proceeds more 
quickly than the initial one due to using previously obtained intermediate 
results internally. Compare the model with the true model by selecting 

nAr nB 2 nbrsds 1–×= =



Chapter 4 Tutorial

© National Instruments Corporation 4-27 Xmath Interactive System Identification Module, Part 1

File»Compare With Model. When the dialog appears, supply the name 
sys_true.

The results are shown in Figure 4-10. We see that the low frequency mode 
is modeled, while the higher frequency mode is neglected. When the 
chosen order is smaller than the real order (undermodeling), sds( ) 
closely fits ranges corresponding to ranges where the input energy is the 
largest, as in classical identification.

Figure 4-10.  Second-Order Model Versus True Model



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-28 ni.com

Now look at some other features:

void=sds(y_prbs2,u_prbs2,

{nbr=10,basis="unscaled",gui,lattice})

The keyword {nbr} indicates the number of block rows in the block 
Hankel matrices. Refer to the more detailed information in the Subspace 
Identification of Stochastic Systems section of Chapter 3, Identification 
Algorithms, or refer to the sds topic in the Xmath Help. This number is 
typically between 10 and 20. The number chosen for nbr should not be too 
large because the computational time is proportional to nbr. Generically 
speaking, the maximal order that can be selected is equal to (nbr – 1) × ny; 
For good results, however, the specified order should not exceed half this 
number, although sds( ) allows you to go higher.



Chapter 4 Tutorial

© National Instruments Corporation 4-29 Xmath Interactive System Identification Module, Part 1

This time the interactive tool comes up displaying a bar plot of principal 
angles, shown in Figure 4-11, due to the use of the keyword {unscaled}. 
It is clear that the system order is 4 because there are four principal angles 
with values significantly different from 90°. Enter this value for the order 
in the Model Order to calculate a fourth-order (stochastic) model.

Figure 4-11.  Principal Angles as Functions of Model Order



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-30 ni.com

Another approach to validating this system involves selecting the 
Validation»Covariance Prediction Error»Innovations Model to 
examine the quality of the stochastic model. As shown in Figure 4-12, 
this produces a plot of the prediction error and a 95% confidence level. 
In general, the innovations model predictions errors should be white unless 
the data was generated by an output error system model. Clearly, the 
covariances are within the 95% confidence bounds.

Figure 4-12.  Covariance Prediction Errors for Fourth-Order Innovations Model



Chapter 4 Tutorial

© National Instruments Corporation 4-31 Xmath Interactive System Identification Module, Part 1

To examine a similar criterion for the prediction error covariance of 
the deterministic model, select Validation»Covariance Pred. Err.»
Input-Output model and thus generate Figure 4-13. Notice that the 
residuals have a coloring roughly equal to that introduced by the stochastic 
subsystem. It can be concluded that it is not too important that the 
95% intervals are violated by the deterministic prediction error 
covariances. These covariances provide a useful check of the importance 
(in a sense of coloring) of the stochastic model.

Figure 4-13.  Prediction Error Covariance for the Fourth-Order Input-Output Model



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-32 ni.com

The Validation»Crosscorr. Input <-> Pred. Err. is a useful technique to 
detect undermodeling. Selecting the Input-Output Model submenu option 
generates Figure 4-14.

Figure 4-14.  Cross-Correlation of Input and Prediction Errors 
for the Fourth-Order Model



Chapter 4 Tutorial

© National Instruments Corporation 4-33 Xmath Interactive System Identification Module, Part 1

Normally, the residuals from the input-output (deterministic) simulation 
should be independent of past inputs. If there is still a significant correlation 
for positive lags outside the 95% confidence bounds, then this would 
indicate undermodeling. It basically indicates that there is still energy in the 
residuals that could be explained by using the inputs. Even though there is 
still some significant cross correlation, it is a lot worse for n = 2, as shown 
in Figure 4-15. There is no improvement for n = 6 (plot not shown here), 
providing further indication that n = 4 seems to be the right order.

Figure 4-15.  Cross-Correlation of Input and Prediction Errors for Second-Order Model



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-34 ni.com

Selecting Validation»Poles and Transmission Zeros»Input-Output 
Model generates the deterministic system’s pole-zero plot in the complex 
plane, as shown in Figure 4-16. The two lightly-damped modes are clearly 
visible. The plot only shows poles and zeros falling between –2 and 2. This 
pole-zero feature also can be used to detect overmodeling.

Figure 4-16.  Pole-Zero Plot for Fourth-Order Model



Chapter 4 Tutorial

© National Instruments Corporation 4-35 Xmath Interactive System Identification Module, Part 1

Most of the time this is the case when a pole and a zero almost cancel. As 
an example, enter n = 8, and look at the resulting pole-zero plot, as shown 
in Figure 4-17, and notice the near pole-zero cancellations. There are 
indications of overmodeling (four poles and zeros that cancel).

Figure 4-17.  Pole-Zero Plot for the Eighth-Order (Overmodeled) Model



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-36 ni.com

Finally, selecting the Algorithm»n popup, you can change basis from 
unscaled to combined, and bias from no bias (0) to bias (1). In 
practical situations, it is often useful to try out different combinations of 
these two keywords. In this simple example, the difference is slight, but in 
practical situations, the differences between the different combinations are 
often on the order of percentages. Table 4-1 compares the errors (in 
percentage) for the four different combinations. Your results could differ 
slightly due to different noise realizations.

Subspace Identification of Stochastic Systems
The sst( ) function for stochastic-system identification is the only 
function specifically designed to identify a system model from output data 
only. ls( ) can be called with either input and output data, or output data 
and a null entry for the input data; however, the interactive tool option is 
not supported for ls( ) in the latter case.

If you have not already done so, load the data you created in the Tutorial 
Data section.

For this problem, we will use a “true” stochastic system model, 
syssto_true, in state-space innovations form, as well as the 
corresponding SDF and covariance functions sdfsto_true( ) 
and covsto_true( ). The noise-added output measurement is y_sto. 
No other a priori information is required. The default basis for sst is 
unscaled because it is more useful to examine the principal angles for 
stochastic systems.

[sts_sst,sr_sst] = sst(y_sto,{gui})

Table 4-1.  Percentage Errors

Bias  Basis

 Input-Output Innovations

 Output 1  Output 2  Force 1  Force 2

No Combined 31.99%  26.80%  29.29%  20.97%

No Unscaled 31.94%  26.81%  29.30%  20.99%

Yes Combined 31.93%  26.72%  29.29%  21.04%

Yes Unscaled 31.84%  26.64%  29.29%  21.02%



Chapter 4 Tutorial

© National Instruments Corporation 4-37 Xmath Interactive System Identification Module, Part 1

Alternatively, if sst( ) is called without the {gui} keyword and no 
model order is specified, a bar plot of the principal angles is generated in 
the Xmath Graphics window and a popup queries you for the order of the 
model you need to identify.

The sst( ) interactive tool appears displaying a bar plot of the principal 
angles as a function of the innovations model order.

The Model Order is initialized to 0. Examining Figure 4-18, notice that 
there are three small angles and thus enter 3 as the Model Order.

Figure 4-18.  Principal Angles as a Function of Model Order



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-38 ni.com

To compare the spectral density function (SDF) of the third-order model 
with that of the true stochastic model, select Validation»Frequency 
Response»SDF Noise Model (Magnitude), and then select File»
Compare With Data and enter main.sdfsto_true. This generates 
a good fit, as shown in Figure 4-19.

Figure 4-19.  Comparison of Third-Order Model Response and True Model Response



Chapter 4 Tutorial

© National Instruments Corporation 4-39 Xmath Interactive System Identification Module, Part 1

Examine the covariance of the noise model based on its impulse response. 
Select Validation»Impulse Response»Covariance Sequence Noise 
Model, and then File»Compare With Data to compare it with the “true” 
impulse-based covariance, main.covsto_true. Figure 4-20 provides 
further evidence that the model accurately captures the statistics of the 
measured output.

Figure 4-20.  Comparison of True and Model Covariance Sequences

The covariance of the prediction errors of the model also fall within the 
95% confidence interval. To see this, select Validation»Covariance Pred. 
Err.»Innovations model. To save the current model, select File»Save 
Model»Xmath and enter a variable name.

A square root object is computed internally and stored in the hidden 
partition _sst_gui when the interactive tool is enabled. It can, of course, 
also be returned as the second output in a call to sst( ) whether or not the 
interactive tool is used. As with the other functions returning a square root 
object (ls( ) and sds( )), sst( ) identifies lower-order models more 
quickly if it is called with a square root object input. It is important to 
notice, however, that because sst does not use input data, the sst square 
root is not interchangeable with roots from ls( ) and sds( ).



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-40 ni.com

To try re-identifying the system for a lower-order model, enter 2 as the 
Model Order. Notice that the computation speed is faster than for the 
original third-order system identification. Validating the resulting system, 
however, shows that the system is undermodeled—for example, the 
prediction error covariance exceeds the confidence bounds—you might 
want to verify this for yourself.

Prediction Error Method
The pem( ) function is the main command for the identification of 
systems in state-space form. Because pem( ) is based on a parameterized 
model structure using a search algorithm, it is essential to specify:

• An adequate model structure

• A good initial estimate

In case only model-order information is passed, pem( ) calls 
initmodel( ) internally to create a model structure and to come up 
with an initial parameter estimate.

For ease of use, wrappers oe( ), bj( ), and armax( ) have been 
provided for prediction error estimation of output error, Box-Jenkins, and 
ARMAX models, respectively; they return the state space equivalent of 
these polynomial model structures.

Model Structures
pem( ) can deal with a variety of ways of passing model structures and 
initial models. We summarize how pem( ) is initialized for each type of 
model structure passed through the keyword {struc}, which can contain 
the different types of data discussed below:

• Model order n—If specified, the model order is a single integer or a 
1 × 2 vector of integers.

A single integer implies a common state space of deterministic and 
stochastic part of dimension struc. If struc is a 1 × 2 vector of 
integers, the deterministic and stochastic parts are separate and have 
dimensions struc(1) and struc(2), respectively. These cases can 
be compared with the well-known ARMAX and Box-Jenkins 
polynomial model structures. When used in this way, initmodel( ) 
is called internally to produce a model structure and initial parameter 
estimate. This is the easiest way of using pem( ) and is most suitable 
for regular use.



Chapter 4 Tutorial

© National Instruments Corporation 4-41 Xmath Interactive System Identification Module, Part 1

If an initial input/output model is passed to pem( ) through 
initm( ), the last element of struc is used to define the model order 
of the stochastic part. If struc is not passed, the order of the stochastic 
part is taken to be equal to that of the deterministic part. This option 
should be used when you want to pass a model identification result 
obtained earlier as an initial estimate for pem( ). Preferably, initial 
models should be in innovations form (refer to the next bullet). 
Innovations models are produced by ls( ) and sds( ) when the 
{inn} keyword is passed. Other algorithms such as giv( ), 
irea( ) and fwls( ) return models of the deterministic part only.

• Model structure in state space form—Model structures are specified 
in the form of a template system containing system matrices. This 
template must be dimensioned identically to the initial model that is 
passed through the keyword {initm}. Each nonzero number of 
struc indicates that the corresponding element of initm is a 
parameter that needs to be estimated. Special indications are as 
follows:

– When a number occurs multiple times, the corresponding 
elements are parameterized by the same parameter.

– A negative sign indicates that the element corresponds to minus 
that parameter value.

– The zero elements of struc indicate that the corresponding 
elements of initm define unparameterized elements, but not 
necessarily of value zero.

We show an example of such a model structure the way it is used 
internally with the oe( ) function.

The initm( ) function must be defined as an innovations model. 
Therefore, it must have a second set of inputs corresponding to the 
stochastic part. These inputs are labeled Noise 1, Noise 2, and so 
forth. Another constraint is that the predictor, corresponding to this 
innovations model, must be stable—in other words, the zeros of the 
stochastic part must be inside the complex unit circle. The function 
reflect( ) can help to achieve this.

• struc not passed—In this case, an initial model (initm) must be 
passed. pem( ) calls initmode( ) to transform it to canonical form. 
In case the initial model is an input/output model, pem( ) adds the 
stochastic part in canonical form.



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-42 ni.com

For the use of oe( ), bj( ), and armax( ), notice that the state 
space model order is ny times the polynomial order, where ny is the 
number of outputs. Thus, the following calls:

sys = oe(y, u, 3)

sys = bj(y, u, 3)

sys = armax(y, u, 3)

are equivalent to the pem( ) calls:

sys = pem(y, u, ny*[3,0])

sys = pem(y, u, ny*[3,3])

sys = pem(y, u, ny*3)

Example
Typing:

[oe2, mstruc, all_oe2] = pem(y_prbs2, u_prbs2, 2,

{niter=5})

activates the prediction error method search algorithm.

The following messages (truncated below) are displayed in the log area:

Sample no. 150

: :

: :

Sample no. 1950

Computing the prediction error variance …

Iteration 1 

Weighted trace prediction errors = 1

Computing the gradient …

Parameter no. 1

: :

: :

Parameter no. 16 

Computing the Gauss-Newton gradient …

Stepsize = 0.12263 , criterion value = 1.1005 

Stepsize = 0.061315 , criterion value = 0.60981

Stepsize = 0.030658 , criterion value = 0.78126 

Stepsize = 0.015329 , criterion value = 0.88831

Stepsize = 0.0076644 , criterion value = 0.94387 

Computing the steepest descent gradient …

Stepsize = 0.1 , criterion value = 1.0583e+05

Stepsize = 0.05 , criterion value = 23562 

Stepsize = 0.025 , criterion value = 5618.4

Stepsize = 0.0125 , criterion value = 1413.2



Chapter 4 Tutorial

© National Instruments Corporation 4-43 Xmath Interactive System Identification Module, Part 1

Stepsize = 0.00625 , criterion value = 353.75 

Stepsize = 0.003125 , criterion value = 87.258

Stepsize = 0.0015625 , criterion value = 21.339

Stepsize = 0.00078125 , criterion value = 5.4395

Stepsize = 0.00039063 , criterion value = 1.7832

Stepsize = 0.00019531 , criterion value = 1.0319

Stepsize = 9.7656e-05 , criterion value = 0.926

Stepsize = 4.8828e-05 , criterion value = 0.9405

Stepsize = 2.4414e-05 , criterion value = 0.96462 

Stepsize = 1.2207e-05 , criterion value = 0.98091 

Stepsize = 6.1035e-06 , criterion value = 0.9901

Stepsize = 3.0518e-06 , criterion value = 0.99496 

Stepsize = 1.5259e-06 , criterion value = 0.99746 

Stepsize = 7.6294e-07 , criterion value = 0.99872 

Stepsize = 3.8147e-07 , criterion value = 0.99936

Stepsize = 1.9073e-07 , criterion value = 0.99968 

Computing the prediction error variance … Iteration 2

Weighted trace prediction errors = 0.609814 

Computing the gradient … 

Parameter no. 1

: :

: :

Parameter no. 16 

Computing the Gauss-Newton gradient …

Stepsize = 0.030456 , criterion value = 0.53561

Stepsize = 0.015228 , criterion value = 0.55138

Stepsize = 0.0076141 , criterion value = 0.57646 

Stepsize = 0.003807 , criterion value = 0.59223 

Stepsize = 0.0019035 , criterion value = 0.60081

Computing the steepest descent gradient …

Stepsize = 0.1 , unstable predictor …

Stepsize = 0.05 , criterion value = 2.19e+05 

Stepsize = 0.025 , criterion value = 13780 

: :

: :

Stepsize = 1.9073e-07 , criterion value = 0.60963

Computing the prediction error variance … 

Iteration 3

Weighted trace prediction errors = 0.535608 

Computing the gradient … 

Parameter no. 1

: :

: :

Parameter no. 16 



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-44 ni.com

Computing the Gauss-Newton gradient …

Stepsize = 0.0019311 , criterion value = 0.53406 

Stepsize = 0.00096553 , criterion value = 0.53445 

Stepsize = 0.00048277 , criterion value = 0.53493 

Stepsize = 0.00024138 , criterion value = 0.53524 

Stepsize = 0.00012069 , criterion value = 0.53542 

Computing the steepest descent gradient …

Stepsize = 0.1 , criterion value = 62482

: :

: :

Stepsize = 1.9073e-07 , criterion value = 0.53558

Stop - criterion cannot be improved any further

The first lines referring to sample numbers are produced by the 
least-squares initial model estimate. The lines referring to parameter 
indices indicate the construction of the derivative of the prediction error 
to each individual parameter element.

The step sizes refer to the norm of the parameter update difference 
relative to the norm of the current parameter vector. For the steepest 
descent method, this always starts at a value of 0.1 for the first update.

The criterion represents the norm of the prediction errors relative to that of 
the initial model. This number is computed as a weighted quadratic sum, 
where the weight matrix is either specified by the user or has been 
computed as the inverse of the prediction error variance of the initial model.

A comparison of the model with the true system is obtained as follows:

g = freq(oe2,f);

mtxplt(abs([g,g_true]), 2, 2, {x_log, y_log,

ultxt="Frequency response magnitude",

bottxt="Second order output error model",

legend=["Estimate";"True system"]});

and is displayed in Figure 4-21.



Chapter 4 Tutorial

© National Instruments Corporation 4-45 Xmath Interactive System Identification Module, Part 1

Figure 4-21.  Estimate versus True Order System

The model structure that was produced by initmodel( ) and returned as 
mstruc( ) is as follows:

mstruc (a state space system) =

A

0 0 1 5

0 0 2 6

0 0 3 7

0 0 4 8

B

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-46 ni.com

C

 9 11 13 15

10 12 14 16

D

0 0 0 0

0 0 0 0

X0

0

0

0

0

Input Names

-----------

Input 1 

Input 2 

Noise 1 

Noise 2 

Output Names

------------

Output 1 

Output 2 

System is discrete, sampling at 2 seconds.

The model oe2 is:

oe2 (a state space system) =

A

0 0 -0.987856 -0.0601275

0 0  0.00478834 -0.962385 

1 0  1.58235 1.14707

0 1  0.0985099 0.869246 

B

1 0

0 1

0 0

0 0

C

0.000522305 -0.000112008 0.00143108  0.0...



Chapter 4 Tutorial

© National Instruments Corporation 4-47 Xmath Interactive System Identification Module, Part 1

2.61235e-05  0.00592772  0.000690598 0.0...

D

0 0

0 0

X0

0

0

0

0

Input Names

-----------

Input 1

Input 2

Output Names

------------

Output 1

Output 2

System is discrete, sampling at 2 seconds.

These systems reflect the controllable canonical structure that was used by 
pem( ).

Maximum Likelihood Method
The maxlike( ) function is unique among ISID functions in that it can be 
used to identify models that are both 

• Nonlinear and linear

• Discrete and continuous-time

The maxlike( ) function is a parametric method but is not restricted to 
finding linear system models of the types discussed in Chapter 3, 
Identification Algorithms; you can provide any set of parameters that 
describe a system. A restriction of maxlike( ) is that the noise is assumed 
to be added directly to the model output, as with output error model 
structures.

Its flexibility stems from the fact that the you provide a MathScript function 
that computes the system output given the system input and parameter 



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-48 ni.com

values. This function may have an arbitrary name, but the default name is 
model.msf.

In addition to returning the parameter history, final parameter values, and 
the output estimates, maxlike( ) also returns the Jacobian and the root 
sum square of the output error terms. You can find a more detailed 
discussion of the MAXLIKE algorithm in Equation 3-8.

To illustrate maximum likelihood identification of a second-order ARMA 
model using the PRBS data:

y = y_prbs2; 

u = u_prbs2;

Calculate least squares for initial parameter estimate:

sys_arma = ls(y, u, 2, {armaform});

tha = sys_arma(5);

thb = sys_arma(6);

p0 = [tha(:, 3:6), thb(:, 3:6)];

p0 = p0(:)';

Call maxlike( ):

p = ones(p0);

[rss,p] = maxlike(u, y, p, {iter=10, delta=0.005});

The file model.msf has the following contents:

Function y = model(p, u);

p = p.*main.p0

tha = zeros(2,4);

tha(:) = p( 1:8 )';

tha = [ eye(2,2), tha]

thb = zeros(2,4);

thb(:) = p( 9:16)';

thb = [zeros(2,2), thb]

sys_arma = arma(thb, tha, 2, 2, {dt=2})

sys = arma2ss(sys_arma)

if max(abs(poles(sys))) > 1 then

y = 100*main.y

else

y = sys*u

endif

endfunction



Chapter 4 Tutorial

© National Instruments Corporation 4-49 Xmath Interactive System Identification Module, Part 1

In this case, the parameterization has been done relative to the initial least 
squares parameters; it turns out that the A and B model parameters are 
orders of magnitude different. Rescaling might improve the maxlike( ) 
results in such cases; in general, however, rescaling is not required. Notice 
also that some safety against instability has been incorporated in the model.

To compare the quality of the model obtained with the final parameter 
values, we can reformat them into an ARMA system model. Construct the 
model, and plot the frequency response:

p = p.*p0;

tha_ml = zeros(2,4); 

tha_ml(:) = p( 1:8 )';

tha_ml = [eye(2,2), tha_ml];

thb_ml = zeros(2,4);

thb_ml(:) = p(9:16)';

thb_ml = [zeros(2,2), thb_ml];

sys_arma = arma(thb_ml, tha_ml, 2, 2, {dt=2});

sys_ml = arma2ss(sys_arma);

g_ml = freq(sys_ml, f);

mtxplt(abs([g_ml, g_true]),

{columns=2, x_log, y_log})

This also illustrates the use of arma( ) and arma2ss( ) for conversion 
of the model to state-space form. The results are shown in Figure 4-22. The 
example is not very illustrative of the much more powerful capabilities that 
maxlike( ) has to identify parameters of SystemBuild models. pem( ) 
would be a more appropriate way of identifying the example data; however, 
the technique required is analogous.



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-50 ni.com

Figure 4-22.  Frequency Response for Maxlike Model

Generalized Instrumental Variables
The giv( ) function implements the generalized instrumental variables 
approach discussed in the Generalized Instrumental Variables section of 
Chapter 3, Identification Algorithms. The optional keyword {gui} invokes 
an interactive tool similar to that used with ls, creating a partition named 
_giv_gui to store the data changed interactively through the tool.

If you have not already done so, load the data you created in the Tutorial 
Data section.

To illustrate giv( ), try:

nmax = 10; lags = 15

sys_giv=giv(y_prbs2,u_prbs2,u_prbs2,nmax,lags,{gui})



Chapter 4 Tutorial

© National Instruments Corporation 4-51 Xmath Interactive System Identification Module, Part 1

The interactive tool appears showing the large diagonal terms of the 
equation error norms, as shown in Figure 4-23. The prediction error 
variance diagonal terms is a function of model order.

Figure 4-23.  Prediction Error Variance Diagonal Terms as a Function of Model Order

We can compare the frequency response of the second-order system with 
that of the true system as follows:

1. Specify a model order of 2 in Order A polynomial.

2. Select Validation»Frequency Response»Input - Output model 
(Magnitude) or (Phase).

3. Select File»Compare With Model, and specify sys_true to 
compare the real system with the fourth-order identified system.

The results appear in Figure 4-24; the fit between the two is good.



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-52 ni.com

Figure 4-24.  Frequency Magnitude Response for Second-Order Model 
Compared with the True System Response

Signal Analysis
The purpose of signal analysis is to get a rough impression of the model and 
data quality in a simple, robust, and efficient manner. Important quantities 
with respect to this are power spectral density (SDF) and coherence 
function estimates. The sdf( ) function computes estimates for either of 
these functions. All functions are either based on the fft( ) and ifft( ) 
functions for the discrete Fourier transformation and its inverse, or on 
autoregressive modeling based on least squares; for more details, refer to 
the Spectral Density Function Estimation section of Chapter 3, 
Identification Algorithms.



Chapter 4 Tutorial

© National Instruments Corporation 4-53 Xmath Interactive System Identification Module, Part 1

First, we estimate the auto spectral density of u_prbs2:

suu2 = sdf(u_prbs2,u_prbs2,128);

mtxplt(abs(suu2),

 {axtxt ="Frequency (Hz)",

 bottxt = "Wide band PRBS",

 ultxt = "Spectral density function"})

Figure 4-25 shows that the bandwidth of this signal is half the highest 
frequency because the signal is kept constant during two consecutive 
samples. The results are a one-sided spectral density.

Figure 4-25.  SDF of u_prbs2



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-54 ni.com

If a two-sided spectral density function is desired, type:

suu2 = sdf(u_prbs2,u_prbs2,128,{fmin=0,fmax=0.5});

The SDF estimation of the sine sweep (suu_ss below) is a good example 
of how problematic spectral density estimation can be. As this is a 
nonstationary signal, we may expect problems; spectral density estimation 
is based on the assumption that the data is stationary.

ss = u_ss1(1,1); suu_ss = sdf(ss,ss,128);

mtxplt(abs(suu_ss),{axtxt = "Frequency (Hz)",

 bottxt = "Sine sweep, SDF averaging method",

 ultxt = "Spectral density function"})

The results are shown in Figure 4-26. In contrast with the expected flat 
spectral density, we see four sharp peaks because sdf( ) systematically 
zeros out certain frequencies due to tapering. Each frequency appears only 
once in the time window due to the characteristics of sines sweep data.

Figure 4-26.  Sine Sweep SDF Showing Frequency Suppression



Chapter 4 Tutorial

© National Instruments Corporation 4-55 Xmath Interactive System Identification Module, Part 1

We can improve the results dramatically by tapering the data at several 
overlapping windows instead of the default non-overlapping case. This is 
achieved through the overlap keyword. The following example uses an 
eight-fold overlap. The computational work is eight times larger than with 
the default overlap parameter of 1.

suu_ss_tap = sdf(ss,ss,128,{overlap=8});

mtxplt(abs(suu_ss_tap),{axtxt = "Frequency (Hz)", 

bottxt="Sine sweep, SDF averaging method "+...

"with 8-point overlap",

ultxt="Spectral density function"})

The resulting SDF estimate, which averages the raw SDF estimates over 
these windows, is displayed in Figure 4-27.

Figure 4-27.  Sine Sweep SDF - Averaging Over SDFs with Overlap



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-56 ni.com

An alternative method to achieve similar results is to average unwindowed 
covariance functions over parts of the data, which is done by specifying the 
{bt} (Blackman-Tukey) keyword.

suu_ss_bt = sdf(ss,ss,128,{bt});

The results are comparable to the previous one and is therefore not shown. 

You can obtain the coherence of y_prbs2 and u_prbs2 by calling sdf( ) 
with the {coh} keyword as follows:

cyu = sdf(y_prbs2,u_prbs2,128,

 {wintype = "Hamming",coh, fmin=0,fmax=0.25});

mtxplt(abs(cyu),{axtxt="Frequency (Hz)",

 bottxt="Narrow band PRBS",

 ultxt = "Coherence"})

The sdf( ) keyword {wintype} specifies the type of data windowing 
to be used. Window options are discussed in more detail in the Spectral 
Density Function Estimation section of Chapter 3, Identification 
Algorithms, as well as in the sdf( ) topic of the Xmath Help.The results 
are displayed in Figure 4-27. The low coherence beyond 0.15 Hz is due to 
the limited system bandwidth. In row 2 of this matrix plot, we can see that 
where the coherence with the first input (Force 1) is high, the coherence 
with the second input is low, and vice versa. This is due to the multivariable 
nature of our data: Because the coherence is based on SDF computations of 
scalar signals, the influence of input 2 on the coherence between the output 
and input 1 (and vice versa) is interpreted by the algorithm as noise.



Chapter 4 Tutorial

© National Instruments Corporation 4-57 Xmath Interactive System Identification Module, Part 1

Figure 4-28.  Coherence Narrow Band PRBS Data

The last sdf( ) keyword option to be discussed in this section is {nar}, 
which specifies that autoregressive modeling is used to estimate the SDFs. 
{nar} is set to a value indicating the number of lags in the autoregressive 
model as shown below. This keyword has the same effect as the window 
width with the FFT-based methods, but, in general, it is considerably 
smaller.

[suu_ar] = sdf(u_prbs2,u_prbs2,300,{nar=10})

With the {nar} keyword specified, the number 300 refers to the number of 
frequency points over which the SDF is computed.

mtxplt(abs(suu_ar),{axtxt="Frequency (Hz)",

 bottxt="Narrow band PRBS, "+...

 "autoregressive-based SDF",

 ultxt="Spectral density function"})



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-58 ni.com

The results shown in Figure 4-29 are quite comparable to the FFT-based 
results shown in Figure 4-25.

Figure 4-29.  AR Based SDF Estimate

Empirical Transfer Function Estimation
The empirical transfer function estimate (ETFE) is implemented with the 
etfe( ) function. It has a corresponding interactive tool. The etfe( ) 
function calls sdf( ) internally and has a similar list of associated 
keywords. Refer to the etfe( ) topic of the Xmath Help for more 
information. These keyword-based options also can be implemented 
within the interactive tool.

If you have not already done so, load the data you created in the Tutorial 
Data section.



Chapter 4 Tutorial

© National Instruments Corporation 4-59 Xmath Interactive System Identification Module, Part 1

Call etfe( ) as follows:

[g_etfe,sdf_noise]=etfe(y_prbs2,u_prbs2,256,{gui})

Specifying the {gui} keyword brings up the graphical user interface for 
etfe( ), shown in Figure 4-30, and also creates the hidden partition 
_etfe_gui to store data changed interactively through the tool.

Figure 4-30.  etfe GUI Tool



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-60 ni.com

The estimated frequency response has a much higher gain than we would 
expect beyond about 0.12 Hz. This is a consequence of the bad signal 
conditioning in that frequency region. You can confirm this by selecting 
Algorithm»Coherence»Magnitude, as shown in Figure 4-31.

Figure 4-31.  Coherence Estimate

Additional etfe( ) options can improve the results. For instance, you can 
change the window width, the overlap parameter, and other parameters 
displayed in the etfe( ) GUI. Because these parameters are identical to 
the ones discussed in the Signal Analysis section, we do not display the 
results here.

The Algorithm pull-down menu is quite comprehensive; it offers the 
interactive computation of covariance, coherence, and spectral density 
estimates. You can determine which of the three kinds of signals—output, 
input, and reference—to use for these menu options with checkboxes on 
the GUI.



Chapter 4 Tutorial

© National Instruments Corporation 4-61 Xmath Interactive System Identification Module, Part 1

Examine the time-domain impulse response obtained from inverse Fourier 
transforming the ETFE. This can be done in combination with a weighting 
of the ETFE to remove unwanted components related to the low coherence 
beyond the bandwidth of the input signal and/or the system.

You can edit the ISID weighting function interactively. Select Algorithm»
Impulse response»Weighted»Enter weight function. Then hold the 
<Shift> key down and click the left mouse button over the data line, 
dragging it until the value beyond 0.12 is very small (that is where the 
coherence is small). It should resemble Figure 4-32.

Figure 4-32.  Weight Function



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-62 ni.com

To see a comparison of the unweighted and weighted impulse response 
estimates, select Algorithm»Impulse response»Weighted»Compute 
impulse response. The results are displayed in Figure 4-33.

Figure 4-33.  Unweighted and Weighted Impulse Response Estimates

Save the impulse response as an Xmath variable by selecting File»Save 
Plot»Xmath. Enter the name main.etfe_impulse in the popup that 
appears. You will use this impulse response data in the Impulse Realization 
section, which discusses the irea( ) identification function.



Chapter 4 Tutorial

© National Instruments Corporation 4-63 Xmath Interactive System Identification Module, Part 1

Impulse Realization
You use the impulse response main.etfe_impulse (generated in the 
Empirical Transfer Function Estimation section using etfe( )) as input 
to irea. Alternatively, you can obtain it from the command line as follows.

g_etfe = etfe(y_prbs2,u_prbs2,256,{fmin=0,fmax=0.5});

g_etfe(129-66:129+66) = 0;

etfe_impulse = real(ifft(g_etfe,{channels}));

etfe_impulse = pdm(etfe_impulse, [0:255]*dt);

The first call uses etfe( ) in such a way that it produces a two-sided 
result, and the second call implements the frequency weighting that you did 
graphically earlier. The PDM call is required because ifft( ) does not 
automatically update the domain from frequency (Hz) to time(sec).

We select the first 100 impulse response parameters. Notice that we might 
even take a smaller number, since the theory does not require that the 
selected part of the impulse response be damped out completely. We call 
irea with 10 as the initial order. Because you are using the interactive tool 
for irea, you can interactively change this later based on the results shown 
in a singular value plot.

sys_imp = irea(main.etfe_impulse(1:100),10,{gui})



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-64 ni.com

The irea interactive tool comes up displaying the Hankel singular values 
of the identified state-space system sys_imp, as shown in Figure 4-34. It 
simultaneously creates the hidden _irea_gui partition to store data 
relating to the tool.

Figure 4-34.  IREA - Hankel Singular Values



Chapter 4 Tutorial

© National Instruments Corporation 4-65 Xmath Interactive System Identification Module, Part 1

There are only four significant components in the Hankel matrix, which 
means that we can obtain a good fourth-order state-space model. You can 
compare the fourth-order impulse response with the original. Change the 
number of retained singular values (Number of SV’s) to 4 and click 
RECOMPUTE. Select Validation»Impulse Response»Input - Output 
model. The comparison of the original and reduced-order impulse 
responses, shown in Figure 4-35, shows the two to be remarkably close.

Figure 4-35.  Comparison of the Original Order (10) and 
Reduced-Order (4) Impulse Responses

You now can recompute the frequency response g_etfe for the 
fourth-order model and display it by selecting Validation»Frequency 
Response»Input-Output Model (Magnitude). Then, select File»
Compare With Data to load in the known frequency response, g_true.



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-66 ni.com

The fit in terms of frequency response is good, as shown in Figure 4-36.

Figure 4-36.  Comparison of Fourth Order Model and True Model Impulse Realizations

Least Squares in the Frequency Domain
The least-squares method is not limited to the time domain only. You 
also can make a least-squares fit to a frequency response obtained by 
etfe( ) or a high order least-squares estimate as discussed in the Least 
Squares-Frequency Domain section of Chapter 3, Identification 
Algorithms. Because this method provides the option of weighting 
frequency bands of interest, we refer to this method as the Frequency 
Weighted Least Squares (FWLS) method. If you have not already done so, 
load the data you created in the Tutorial Data section. We illustrate how to 
use the fwls( ) function with its interactive tool.

[g_etfe, sdf_noise] = etfe(y_prbs2,u_prbs2,256);

nmax = 10;

[sys_fwls,sr_fwls] = fwls(g_etfe,nmax,dt,{gui});



Chapter 4 Tutorial

© National Instruments Corporation 4-67 Xmath Interactive System Identification Module, Part 1

The parameter dt must be passed to fwls( ) since fwls( ) cannot 
determine the model time step from frequency domain data.

When the interactive tool is first created, it displays a bar plot of the 
prediction error variance matrix diagonal terms for each output as a 
function of model order, as shown in Figure 4-37. The maximal model 
order is nmax, or 10, which is displayed in the Order A polynomial and 
Order B polynomial fields. Because fwls( ), like ls( ), creates a 
square root object, you can obtain all lower-order models without 
recomputing the square root information.

Figure 4-37.  FWLS Errors, Uniform Weight

Particularly for the first output, the values do not drop sharply as a function 
of model order. One approach is to see how well the frequency response of 
the identified model matched the measured data for a variety of model 
orders.

You can examine the second-order model responses by entering 2 for the 
Order A polynomial and selecting Validation»Frequency Response»
Input-Output Model (Magnitude). The fit is poor; fwls( ) seems to 



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-68 ni.com

have problems fitting the high frequency part. That makes sense because 
the ETFE is ill-conditioned there. You can take advantage of the frequency 
weighting feature to improve the results.

To use the frequency weighting feature, complete the following steps.

1. Select Algorithm»Frequency Weight.

A dialog box appears.

2. When asked which input you want to weigh, click OK to weigh all 
inputs equally.

The plot area then shows the default unity weight function.

You want the weighting window to resemble Figure 4-38.

Figure 4-38.  Weight Function

3. Change the weight function as follows:

a. Holding down the <Shift> key, click the mouse button at the left 
end of the function line and drag it to the right to a frequency of 
about 0.12 Hz. Without releasing the mouse button, move the 
mouse until the weight is about 80.



Chapter 4 Tutorial

© National Instruments Corporation 4-69 Xmath Interactive System Identification Module, Part 1

b. Holding down the <Shift> key, click the mouse button at about 
0.12 Hz and drag the mouse to the right end of the frequency 
range. Without releasing the mouse button, move the mouse until 
the weight is about 0.1.

c. Click RECOMPUTE to regenerate the models.

d. Select Validation»Frequency Response»Input - Output Model 
(Magnitude).

This action allows you to compare the magnitude response of the 
weighted model with the ETFE, as shown in Figure 4-39.

Figure 4-39.  Comparison of Second-Order Reduced Model Response 
and True Response

The result is acceptable. The use of fwls( ) to reduce frequency 
responses of high order models is particularly helpful for the ls( ) 
case, which frequently requires you to identify high-order ARX models. 
You may find it informative to try this out on the LS example in the 
Least-Squares in the Time Domain section.



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-70 ni.com

SISO Transfer Function Identification from Frequency 
Response Data

The tfid( ) function provides a method for continuous-time 
frequency-domain identification. tfid( ) is limited to the identification 
of single-input, single-output (SISO) systems, but it is a particularly useful 
approach when some prior information, such as the number of system zeros 
and poles, is known. tfid( ) identifies a standard Xmath system in 
transfer function form using Chebyshev polynomials as basis functions; 
you can find details of the algorithm in [AD87]. You can specify an 
optional weighting PDM of the same size as the frequency response to 
indicate areas of particular interest.

If you have not already done so, load the data you created in the Tutorial 
Data section.

tfid( ) does not handle the complete multiple-input, multiple-output 
(MIMO) PRBS identification data used in other examples, but we can 
extract a channel of the true frequency response and examine how well 
tfid( ) can match it.

g_siso = g_true(1,1);

In calling tfid( ), you take advantage of the fact that you have a fairly 
good idea of the system order, thanks to the previous identifications you 
have performed. By default, tfid( ) displays a bode-format magnitude 
and phase plot in the Xmath Graphics window; for consistency, however, 
you will suppress this plot and use mtxplt( ) to compare the responses 
here. Before making the fit, you truncate g_siso to the first 128 samples; 
near the Nyquist frequency, discrete-to-continuous fits usually give 
problems so you want to avoid that area.

g_siso = g_siso(1:128);

[tf,sys,g_tfid] = tfid(g_siso,{np=4,nz=4,!graph});

mtxplt([abs(g_siso),abs(g_tfid)],{y_log,x_log,

 columns=1,ultxt="Frequency Response",

 axtxt="Frequency (Hz)",

 bottxt="Measured response (solid} vs."+...

 "tfid response (dashed)"})



Chapter 4 Tutorial

© National Instruments Corporation 4-71 Xmath Interactive System Identification Module, Part 1

Figure 4-40 shows that the fit is very close for this frequency range.

Figure 4-40.  Comparison of Measured and tfid-Identified Response 
with Default Weighting

Instead of using the first part of the frequency response, you might have 
passed an appropriately defined weight function instead to achieve the 
same effect. You may want to experiment with iteratively improving the fit 
using the inverse of the model denominator polynomial as weight function; 
the reason for this choice is that least squares systematically suppresses the 
information near the zeros of the denominator polynomial.

The identified SISO system is returned as both a transfer function (tf( )) 
and a state-space system (sys); the two results are calculated using 
different representations. They generally describe exactly the same system, 
but the state-space system might be more numerically reliable for 
high-order identifications.



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-72 ni.com

Validation
Validation means determining the model quality. It is the most difficult part 
of the whole identification cycle and sometimes is more of an art than a 
science. Many questions are still unresolved, such as: what is “good?” A 
model might have a large uncertainty in certain frequency bands, yet turn 
out to be good enough for control design. This section summarizes several 
validation topics and provides some guidelines.

Innovations Models
Because most model validation utilities deal with prediction errors, a model 
in innovations form is often more appropriate than an input/output model. 
The functions ls( ), sds( ), oe( ), armax( ), bj( ), and pem( ) 
produce innovations models when the parameter {inn} is passed:

[sys,sr] = ls(y_prbs2,u_prbs2,8,{inn});

This model has additional inputs for the stochastic parts. Refer to 
information about innovations models in Chapter 2, Identification Process. 
The input/output part can be extracted by indexing:

nu=2;

sys_io = sys(:, 1:nu);

The functions idsim( ), idimpulse( ), and idfreq( ) can deal with 
both innovations and input/output models. For example, the following 
function calls are equivalent:

g = idfreq(sys,f);

g = freq(sys_io,f);

Computing Prediction Errors
Using the inn2pe( ) function, prediction errors of an identified model 
can be obtained as follows:

e = inn2pe(sys,y_prbs2,u_prbs2);

The more general simulation function idsim( ) also can be used for this 
purpose:

[yhat, e] = idsim(y_prbs2,u_prbs2,sys,{mode=1});

This produces both the prediction and the prediction error. It has a {mode} 
keyword to indicate whether you want a prediction based on a 



Chapter 4 Tutorial

© National Instruments Corporation 4-73 Xmath Interactive System Identification Module, Part 1

Kalman-Filter or on the input/output model only; the default is mode=0, 
which corresponds to input/output.

Signal Analysis
Spectral density computation and coherence are useful quantities for 
determining the input signal bandwidth and the correlation between input 
and output as a function of frequency:

[suu] = sdf(u_prbs2,u_prbs2,256);

[cyu] = sdf(y_prbs2,u_prbs2,256,{coh});

Use sdf( ) to produce spectral density functions, covariance functions, 
and coherences by passing the appropriate keywords. The ETFE GUI 
has several menu options that you can use to inspect these quantities 
interactively; you can obtain covariance and SDF estimates of the noise, 
as well.

Stochastic Properties of Innovations Models
The functions idimpulse( ) and idfreq( ) produce the noise 
covariance and spectral density functions as additional outputs:

[g,sdf_n]=idfreq(sys,f);

[imp,cov_n]=idimpulse(sys,[0:2:200]);

The estimates are based on the estimated innovations model only, not on 
signal analysis. You can invoke the etfe( ) function, however, to produce 
a nonparametric noise SDF estimate:

[g,sdf_n] = etfe(y_prbs2,u_prbs2,512);

Model Uncertainty Estimates
The functions ls2unc( ) and inn2unc( ) produce estimated parametric 
model uncertainties based on the Fisher information matrix. Assuming 
correctness of the model assumptions, the one-sigma model frequency 
response model errors are estimated by conversion of the estimated 
parameter variance to frequency response magnitude:

[g,deltag] = ls2unc(8,sr,f);

[deltag] = inn2unc(y_prbs2,u_prbs2,sys);

You can apply inn2unc( ) to both innovations models and input/output 
models. If an innovations model is not available, inn2unc( ) internally 
estimates a stochastic model to make the computation of the Fisher 
information matrix possible.



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-74 ni.com

These estimates take some time to compute. They only are valid under the 
assumption that the model is close to the true system and under the regular 
assumptions of prediction error methods. The ls( ) and sds( ) GUIs 
use these functions internally and represent the model error estimate as a 
band around the estimated model frequency response.

Least Squares Prediction Error Norms
For the special case of least squares, computation of error norms on both 
the identification or the validation data set can efficiently be done using the 
square root:

[sysi,sr_id] = ls(y_prbs2(1:1024), u_prbs2(1:1024),10);

[sysv,sr_val] = ls(y_prbs2(1025:2048), 

u_prbs2(1025:2048),10);

var_id = ls2var(sr_id) 

var_val = ls2var(sr_id,{srval=sr_val})

A similar function is available for the instrumental variables method: 
giv2var.

Pole/Zero Inspection
You can compute poles and zeros with a plot showing their locations using 
the polezero( ) function:

[pls, zrs] = polezero(sys);

Non-square systems generically have no zeros.

Interactive Validation Tool
val( ) provides an interactive tool that you can use for general validation 
of input-output data with a system model or for general response analysis 
of a given system. It is instantiated by calling the val( ) function with 
either a single discrete-time system model (ARMA, backward polynomial, 
state-space, or state-space innovations) or a model and input and output 
data. Within the tool, you have the facility to validate any saved system 
model with any data set through the standard options available through the 
Validation menu. val( ) is particularly helpful for validating models 
obtained with identification routines (including your own) that do not 
include their own interactive tools.



Chapter 4 Tutorial

© National Instruments Corporation 4-75 Xmath Interactive System Identification Module, Part 1

To validate a least squares model, complete the following steps.

1. Provide the inputs:

[sys,sr] = ls(y_prbs2,u_prbs2,8,{inn});

val(sys)

The interactive tool comes up displaying the frequency response of 
sys. Examining the Validation menu, notice that only the frequency 
response, impulse response, and pole-zero plot options are currently 
available. Validate sys with data from different data sets.

2. Enter sys in System Name, u_prbs2 in Input Data, and y_prbs2 in 
Output Data, remembering to press <Return> or <Enter> after each 
entry.

Notice that all the options in the Validation menu are now enabled.

3. As a partial validation of the noise model, select Validation»
Prediction Errors»Input - Output model.

Notice the percentage errors (34.77% and 30.10%) shown at the top of 
the plot.

4. Change the Input Data to u_ss2 and Output Data to y_ss2.

5. Click RECOMPUTE.

The errors increase to 49.81% and 26.71% when the sys_ls model is 
validated with data it was not identified with.

6. Select Validation»Frequency Response»Input - Output model 
(Magnitude) to plot the magnitude response of sys_ls.

7. Select File»Compare With Data and enter main.g_etfe as the data 
variable to compare this response with that generated with etfe( ) 
by s. 

This example illustrates the flexibility of val( ) as a utility for comparing 
different models validated over different data sets.

 Guidelines
• You should check assumptions on the data or filtered quantities that are 

used as a basis for the identification algorithm. In the case of prediction 
error methods, for instance, check conditions like whiteness of 
prediction errors. For the open-loop case, you would expect that the 
prediction errors are uncorrelated with the input and in the closed-loop 
case, uncorrelated with past inputs only.

• The most reliable method of determining the optimal order for a given 
model structure is cross validation, where two data sets are available; 



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-76 ni.com

use one set for identification and the other one for validation. If the 
model order is too large, then the additional freedom in the parameter 
vector results in an increased prediction error norm on the validation 
data set. This functionality is available through the general validation 
interactive tool provided by val( ). Refer to the Interactive 
Validation Tool section for more information.

• Comparing the consistency of models obtained by different 
identification algorithms and/or using different data sets can be useful. 
If, for instance, an empirical transfer function estimate gives an 
entirely different result than a high order least-squares estimate, then 
that is an indication that something is wrong with one or both of the 
models. However, the opposite does not necessarily hold true.

• Validation is a lot easier in the case of model reduction. It can simply 
be done by comparing the result with the known original model as 
opposed to the identification case.

• Because least-squares, instrumental variables, and subspace models of 
different orders are obtained easily, these methods offer a lot of 
validation opportunities. You might compare the variances of 
prediction errors for different model orders. The usual plot of variance 
versus order shows a sharp decline for the first couple of model orders, 
from which a minimal order can be deduced. You can compare 
frequency responses of models for different orders and hope to observe 
a convergence as the model order increases. This is most easily done 
using the GUIs.

Input Design
Input sequence design is directly related to the signal-to-noise ratio and is 
therefore an important factor in the identification procedure. Input design 
is impossible without prior information. Sometimes that prior information 
is obtained from earlier identification tests. As the theory of input design is 
not quite ready for translation to practical design algorithms, take a more 
pragmatic approach to the problem; you want to construct input signals 
which have a fairly constant power over a certain frequency band. 
Typically, this frequency band covers the system bandwidth, which is 
assumed to be roughly known. More general kinds of input sequence can 
be obtained by adding several of these signals or filtering them.

In engineering, sine sweeps or chirps are commonly used for the excitation 
of one input component at a time. They can be considered as sine functions 



Chapter 4 Tutorial

© National Instruments Corporation 4-77 Xmath Interactive System Identification Module, Part 1

based on frequency, which is a slowly increasing linear function of time. 
The function is called as follows:

dt = 2;

[ss,t] = sweep(0,0.125,1*dt,2048*dt,dt,512*dt);

plot(ss)

The easiest way to explain how this function works is to consider ss, a 
discretized continuous-time signal where the time is measured in seconds 
and where the discretization interval is dt seconds. This call generates a 
sine sweep that goes from 0 to 0.125 Hz over the time interval dt to 
2048*dt where the frequency increases from its minimum value to its 
maximum in 512*dt seconds; then goes down again. The result is shown 
in Figure 4-41.

Figure 4-41.  Sine Sweep

Another popular signal is the so-called pseudo-random binary sequence 
(PRBS), generated by the prbs function:

p = 2*(prbs(9,[1,1,1,1,1,0,0,0,0])-.5); plot(p)?



Chapter 4 Tutorial

Xmath Interactive System Identification Module, Part 1 4-78 ni.com

This call generates a PRBS of 29 – 1 samples which is uncorrelated over its 
entire data length. The original values of the PRBS are 0 and 1, so those of 
p are –1 and 1. The second input parameter is optional and determines the 
initial state of the PRBS register. This initial sequence can be recognized as 
the last nine values, due to the periodicity of the signal. You can refer to this 
plot in Figure 4-42.

Figure 4-42.  PRBS

Because of its whiteness, the PRBS has constant power over all 
frequencies. However, it is possible to make the bandwidth k times smaller 
by keeping the signal constant over k constant values (for example, k = 2) 
as follows:
nsamp = 2**9-1; 

p_lf(1:nsamp:2) = p(1:nsamp/2+1);

p_lf(2:nsamp:2) = p(1:nsamp/2);

Another important input signal, especially with simulations, is random 
Gaussian noise. This can be generated using the core Xmath function 
random( ):
set distribution normal

r = random(nsamp,1)



© National Instruments Corporation A-1 Xmath Interactive System Identification Module, Part 1

A
List Data Structures

This appendix contains the list objects created to hold data from special 
models.

The preferred object storage method in MathScript is the MathScript 
Object (MSO) method described in Xmath User Guide. The objects 
described in this appendix were created before MSOs were available.

ARMA Models
ARMA systems are currently represented as 10-element list objects. Each 
element field contains a particular data variable associated with the ARMA 
system as listed in Table A-1.

Table A-1.  ARMA Systems

Field Variable Definition

 1 “ARMA” A string used within the module 
functions to identify this list as an 
ARMA system.

 2 outputnames A vector of strings representing the 
names of the outputs of the system.

 3 inputnames A vector of strings representing the 
names of the inputs of the system.

 4 dt The sampling interval of the system 
data.

 5 ϑB A matrix containing the Bk matrices in 
the format ϑB = [B0, B1, B2, ..., BnB

].

 6 ϑA A matrix ϑA containing the Ak 
matrices in the format 
ϑA = [I, A1, A2, ..., AnA

].

 7 ny Number of system outputs.

 8 nu Number of system inputs.



Appendix A List Data Structures

Xmath Interactive System Identification Module, Part 1 A-2 ni.com

ARMA objects can be created directly from data and operated on using 
ISID functions. They also can be converted to and from standard Xmath 
state-space system objects. For more details on functions using or returning 
ARMA objects, refer to the Xmath Help.

Backwards-Polynomial Innovations Model 
Implementation

The ISID Module uses a list-based object to represent any of the 
varieties of backward polynomial models. Because this list is designed 
to accommodate the most general model of this structure, it has seventeen 
fields, not all of which need to be explicitly specified when you are creating 
one of the more specific model types (the C, D, and F matrices default to 
identity as necessary). The structure is listed in Table A-2.

 9 nA Order of the A polynomial.

10 nB Order of the B polynomial.

Table A-2.  Model Structure

Field Variable Definition

1 BP Innovations 
Model

A string used within the module 
functions to identify this list as a 
backward polynomial model.

2 outputnames A vector of strings representing the 
names of the outputs of the system.

3 inputnames A vector of strings representing the 
names of the inputs of the system.

4 dt The sampling interval of the system 
data.

5 ϑB A matrix ϑA containing the Ak 
matrices in the format: 
ϑA = [I, A1, A2, …, AnA

].

Table A-1.  ARMA Systems (Continued)

Field Variable Definition



Appendix A List Data Structures

© National Instruments Corporation A-3 Xmath Interactive System Identification Module, Part 1

Figure A-1 illustrates the connections between ISID functions that create 
these different system models and convert from one representation to 
another.

6 ϑA A matrix ϑB containing the Bk 
matrices in the format: 
ϑB = [B0, B1, B2, …, BnB

].

7 ϑF A matrix ϑF containing the Fk 
matrices in the format 
ϑF = [I, F1, F2, …, FnF

].

8 ϑC A matrix ϑC containing the Ck 
matrices in the format 
ϑC = [I, C1, C2, …, CnC

].

9 ϑD A matrix ϑD containing the Dk 
matrices in the format 
ϑD = [I, D1, D2, …, DnD

].

10 var A square ny × ny matrix indicating the 
noise variance on the outputs.

11 ny Number of outputs.

12 nu Number of inputs.

13 nA Order of the A polynomial.

14 nB Order of the B polynomial.

15 nF Order of the F polynomial.

16 nC Order of the C polynomial.

17 nD Order of the D polynomial.

Table A-2.  Model Structure (Continued)

Field Variable Definition



Appendix A List Data Structures

Xmath Interactive System Identification Module, Part 1 A-4 ni.com

Figure A-1.  Model Conversion

LS Square Root
The output parameter sr is a list object containing the S matrix as well as 
relevant structural parameters pertaining to the identification including the 
number of inputs and outputs, orders of A and B polynomials, and the 
number of regressions used.

Square root objects are 10-element lists structured as described in 
Table A-3.

Table A-3.  ARMA Systems

Field Definition

1 “LS Square Root” or “Lattice Square Root” (label 
indicating the type of square root object).

2 Output names.

3 Input names.

bpm

bpmjoin bpmsplit

arma

arma2ss

ss2arma

bpm2inn

inn2bpm

innsplit innjoin

system

canform
obscf ctrcf

State-Space 
Model

State-Space 
Innovation 

Model

ARMA Model

Backward 
Polynomial 
Innovations 

Model

canform
obscf ctrcf



Appendix A List Data Structures

© National Instruments Corporation A-5 Xmath Interactive System Identification Module, Part 1

4 Sampling interval dt.

5 S matrix.

6 Number of outputs ny.

7 Number of inputs nu.

8 Order of B polynomial.

9 Order of A polynomial.

10 Number of input/output data samples.

These parameters contain all information required for 
ARX models up to the minimum of the orders of the 
A and B polynomials.

11 Vector containing indices of the output regressions.

12 Vector containing indices of the input regressions.

Table A-3.  ARMA Systems (Continued)

Field Definition



© National Instruments Corporation B-1 Xmath Interactive System Identification Module, Part 1

B
Loading Data with the read( ) 
Function

In a typical scenario, data is obtained as discrete-time input and output 
measurements from a computer associated with the system to be identified. 
Depending on the data-measuring program, the data can be in ASCII or 
binary format.

Pure numeric data is typically most easily brought into Xmath through the 
read( ) function. This is a generic function available with the Xmath core 
that allows you to read any type of formatted numeric data into an Xmath 
matrix variable. You can find specific information on this function in the 
Xmath Help or the Xmath User Guide.

To use read( ), you need to know the name of the file containing the data, 
the dimensions of the matrix you want the data to occupy, and the format of 
the data file. By default, read( ) begins reading data from the beginning 
of the file. You have the option of specifying an amount of data to be 
skipped if you want to begin reading in data from the middle of the file.

The read( ) function, shown in Example B-1, is better suited to 
reading in numeric data than text data. If you have multiple data files 
with a standard format, you may want to create your own script files or 
functions calling read( ) to load in the data from these files.

The file $XMATH/demos/ship.ascii contains raw data corresponding to 
the steering angle theta of a boat (the system input), a vector of the time 
points at which each measurement was made, and x and y measurements of 
the boat position (the system output).

ship.ascii contains all data in ASCII format. Each information set 
corresponds to 101 time points. While this is a very small data set in terms 
of most identification problems, it is fairly typical in that you know the 
length of the data records ahead of time. 

Example B-1 formats the data for the angle theta and the time as 101 × 1 
vectors and the position data as a 101 × 2 matrix.



Appendix B Loading Data with the read( ) Function

Xmath Interactive System Identification Module, Part 1 B-2 ni.com

Example B-1 Calls to Read to Obtain the Data from ship.ascii

theta = read("$XMATH/demos/ship.ascii", 101, 1, "ascii");

time = read("$XMATH/demos/ship.ascii", 101, 1, "ascii",13);

position = read("$XMATH/demos/ship.ascii", 101, 2, "ascii",27);

Note The second and third calls to read( ) include an offset indicating the number of 
lines to skip before beginning to read from the file.



© National Instruments Corporation C-1 Xmath Interactive System Identification Module, Part 1

C
Tool-Specific GUI Features

This appendix lists the approach-specific features of each tool:

• Least Squares GUI (LS)

• Instrumental Variables GUI (GIV)

• Empirical Transfer Function GUI (ETFE)

• Impulse Realization GUI (IREA)

• Frequency Domain Least Squares GUI (FWLS)

• Deterministic/Stochastic Subspace GUI (SDS)

• Stochastic Subspace GUI (SST)

• Validation GUI (VAL)

Least Squares GUI
Algorithm options include the following:

• Error Norms—Plots the diagonal terms of the prediction error 
variance matrix.

• SDF Prediction Errors—Depending on your selection from a 
walking submenu, plots the magnitude or phase of the spectral density 
function prediction errors. Magnitude is plotted as a direct ratio (no 
units); phase is plotted in degrees.

• Frequency Weight—This option is valid only for the 
frequency-weighted least squares function fwls( ). Refer to 
the Least Squares in the Frequency Domain section of Chapter 4, 
Tutorial, for more information. It is inactive for ls( ).

• SV Selection—Brings up a bar plot showing the singular values. This 
can be a useful guide in determining how many of the singular values 
should be retained in re-identifying the data with an SVD-based 
solution.

• Defaults—Allows you to modify the computational method used, the 
type, width, and overlap of the windows used over the data, the order 
of the SDFs and autoregressions, the frequency vector over which the 
model’s frequency response is computed, and finally, the maximum 
and minimum values of any scaling weight function.



Appendix C Tool-Specific GUI Features

Xmath Interactive System Identification Module, Part 1 C-2 ni.com

• Recompute—Provides the same functionality as the RECOMPUTE 
button but includes a key binding.

You can change a number of modeling options interactively with the toggle 
buttons and editable labels beneath the plot area. After you use them 
to make the desired changes to the identification, you can press 
RECOMPUTE to re-identify the data and update the displayed plots.

Below the plots, on the left side of the ls interactive tool are three VarEdit 
widgets:

• Order A polynomial—Allows you to modify the order of the 
A polynomial to any value no greater than the value with which the 
tool was launched. When you enter a value in this widget and press 
<Return> or <Enter>, that value is used for the orders of both the A and 
the B polynomials. This is done because identifications are frequently 
performed using the same order for both polynomials. However, you 
can set the B polynomial order separately, as described below.

• Order B polynomial—Allows you to modify the order of the 
B polynomial to any value no greater than the value with which the 
tool was launched. When you enter a value in this widget and press 
<Return> or <Enter>, that value is used for the order of the 
B polynomial only.

• Number of SVs—Allows you to set the number of singular values to 
be retained in using an SVD-based solution. Refer to the Singular 
Value-Based Solutions section of Chapter 3, Identification Algorithms, 
for more information. When you enter the number n, the n largest 
values are retained and used in the solution, while the rest are set to 
zero.

Four checkboxes appear near the bottom of the interactive tool:

• Feedthrough Term—If enabled, the model is recomputed using a 
feedthrough term B0 in Equation 3-1. If the tool is called with the 
{feed} keyword specified, this checkbox is enabled.

• Scalar Denominator—If enabled, the model is recomputed with the 
assumption that all the elements of the multivariable transfer function 
have the same poles. Refer to the Least Squares with Scalar 
Denominator section of Chapter 3, Identification Algorithms, for more 
information. If the tool is called with the {scden} keyword specified, 
this checkbox is enabled.



Appendix C Tool-Specific GUI Features

© National Instruments Corporation C-3 Xmath Interactive System Identification Module, Part 1

• SVD Solution—If enabled, the model is recomputed using a solution 
based on a singular-value decomposition of the LS square root. If the 
{nsvd} keyword is set equal to some nonzero value when the tool is 
called, this checkbox is enabled.

• Cross Validation—If you use the {yval} and {uval} or {srval} 
keywords when calling ls with the interactive tool, this checkbox is 
enabled, indicating that a validation data set is available.

The Cross Validation checkbox in the interactive tool is enabled 
in our examples because we specified validation data when we 
called ls( ).

Generalized Instrumental Variables Tool
The generalized instrumental variables (GIV) interactive tool is fairly 
simple. The Algorithm menu contains the following options:

• Error Norms—Plots the diagonal terms of the prediction error 
variance matrix.

• Defaults—Allows you to specify the frequency vector to be used in 
calculating the frequency response of the identified system.

• Recompute—Provides the same functionality as the RECOMPUTE 
button; includes a keyboard accelerator.

One checkbox appears in the interactive tool:

• Feedthrough Term—If enabled, the model is recomputed using a 
feedthrough term B0 in the Generalized Instrumental Variables section 
of Chapter 3, Identification Algorithms.

There are three VarEdit widgets below the plots in the GIV interactive tool:

• Model Order—The order of the current ARMA system.

• IV Lags Past—The number of past lags used in the instrumental 
variables least squares fit.

• IV Lags Future—The number of future lags used in the instrumental 
variables least squares fit.



Appendix C Tool-Specific GUI Features

Xmath Interactive System Identification Module, Part 1 C-4 ni.com

Empirical Transfer Function GUI
The menu layout of the etfe tool is as discussed in the General Features 
of ISID Interactive Tools section of Chapter 4, Tutorial; however, the 
Validation menu is inactive for this tool because etfe returns PDMs for the 
system frequency response and spectral density noise rather than one of the 
system models described in Model Structures section of Chapter 4, 
Tutorial. Validation of the etfe-identified response is accomplished 
through the Algorithm menu. The Algorithm menu options are as follows:

• ETFE—A walking submenu lets you select whether to plot the 
magnitude or phase of the empirical transfer function estimate.

• SDF—Computes and plots the spectral density function of the output 
with the input data. A walking submenu lets you select a magnitude or 
phase plot of the SDF.

• SDF Additive Noise—Plots the spectral density function of the 
additive model noise. A walking submenu lets you select a magnitude 
or phase plot.

• Coherence—Plots the magnitude or phase (depending on submenu 
selection) of the coherence of the output with the input data.

• Covariance—Computes and plots the covariance of the output 
with the input data; performs the ETFE identification using 
covariance-averaging instead of SDF-averaging.

• Covariance Additive Noise—Plots the noise computed with an ETFE 
obtained by covariance averaging.

• Impulse Response—Plots the impulse response obtained as the real 
part of the inverse Fourier transform of the frequency-domain ETFE. 
A walking submenu allows you to plot the unweighted response 
directly or to weight the ETFE interactively using the mouse and then 
recompute and plot the weighted impulse response.

• Display Signals—Plots the output and input data signals in strip plot 
format.

• Recompute—Provides the same functionality as the RECOMPUTE 
button, including a keyboard accelerator.

Two more menu options appear below the plotting area:

• Computational Method—As discussed in the Spectral Density 
Function Estimation section of Chapter 3, Identification Algorithms, 
the spectral density functions from which the ETFE is computed can 
be obtained in several ways: by averaging spectral density function 
estimates, averaging covariances, or by an autoregressive method. 



Appendix C Tool-Specific GUI Features

© National Instruments Corporation C-5 Xmath Interactive System Identification Module, Part 1

Changing the computation method through this menu and clicking 
RECOMPUTE recomputes the ETFE and updates the plot.

• Window Type—Allows you to change the type of data windowing 
interactively. The mathematical formulas for the window types 
(Hamming, Hanning, Blackman, Triangular, and Rectangular) are 
given in the Spectral Density Function Estimation section of 
Chapter 3, Identification Algorithms.

Below the plot are three checkboxes labeled Select input, Select output, 
and Select reference. You can enable any combination of these to 
determine which signals to use in computing the ETFE. If the system is 
open-loop, the reference signal is taken to be the same as the input signal; 
otherwise, you can explicitly specify a reference signal with the keyword 
{ref} when you call etfe( ).

Three VarEdits are located near the bottom of the tool:

• Window width/Frequency points—Allows you to change the 
number of points in each window over the data when you are using the 
SDF or covariance computational method. If you are using the 
autoregressive approach, the value in this VarEdit is used as the 
number of frequency points to use in the computation.

• SDF/AR order—This VarEdit should be set to the number of lags 
desired when using the autoregressive approach.

• Overlap—Allows you to change the number of overlapping windows 
in which each data point appears.

Impulse Realization GUI
The Algorithm menu has two irea-specific options:

• SV Selection—Brings up a bar plot of the system Hankel singular 
values.

• Defaults—Brings up a popup window thorough which you can change 
either the computational method used (refer to the Identification from 
Impulse Response Data section of Chapter 3, Identification 
Algorithms) or the vector of frequencies to be used in computing the 
system frequency response as part of the identification validation.



Appendix C Tool-Specific GUI Features

Xmath Interactive System Identification Module, Part 1 C-6 ni.com

Three VarEdit widgets are located beneath the plot area of the tool:

• Number of block rows—Allows you to modify the number of block 
Hankel rows used in the identification.

• Number of block columns—Allows you to modify the number of 
block Hankel columns used in the identification.

• Number of SVs—Allows you to choose the number of singular values 
nsv to retain in forming the identified state-space system. All singular 
values smaller than the nsv largest singular values are set to zero. You 
can change the vector frequency range over which to evaluate the 
frequency response of the system.

A combo box labeled beneath these VarEdits shows and allows you to 
change the current computational Method (Zeiger/McEwen). The 
computation method also can be changed through the Algorithm»Defaults 
menu.

Frequency Domain Least Squares GUI
The interactive tool for fwls resembles that for ls( ) and offers similar 
options through the Algorithm menu. Refer to the Least Squares GUI 
section for a listing and description of these options. The key difference is 
that the Algorithm»Frequency weight option is enabled for the fwls( ) 
tool.

Deterministic/Stochastic Subspace GUI
The options listed on the Algorithm menu are as follows:

• Select Order—Can be used to regenerate the bar plot of singular 
values or principal angles shown when the interactive tool is first 
instantiated.

• Defaults—Brings up a popup in which you can modify the 
identification bias, the type of basis to use, scaling factors, and whether 
or not to use the lattice algorithm. The validation parameters you can 
change are the range and number of points to use in computing the 
system’s frequency response, as well as the number of lags to use in 
computing the covariance of the prediction error and the impulse 
response.

• Recompute—Provides the same functionality as does the 
RECOMPUTE button with an associated keybinding.



Appendix C Tool-Specific GUI Features

© National Instruments Corporation C-7 Xmath Interactive System Identification Module, Part 1

Two VarEdit widgets appear beneath the plotting area:

• Model Order—Allows you to change the order of the model to be 
identified.

• Number of Block Rows—Allows you to change the number of block 
rows to use in forming the Hankel matrix used in the identification.

Stochastic Subspace GUI
The options listed on the Algorithm menu are as follows:

• Select Order—Can be used to regenerate the bar plot of singular 
values or principal angles shown when the interactive tool is first 
instantiated.

• Defaults—Brings up a popup in which you can modify the type of 
basis to use, scaling factors, and whether or not to use the lattice 
algorithm. The validation parameters you can change are the range and 
number of points to use in computing the system’s frequency response, 
as well as the number of lags to use in computing the covariance of the 
prediction error and the impulse response.

• Recompute—Provides the same functionality as does the 
RECOMPUTE button with an associated keybinding.

Two VarEdit widgets appear beneath the plotting area:

• Model Order—Allows you to change the order of the model to be 
identified.

• Number of Block Rows—Allows you to change the number of block 
rows to use in forming the Hankel matrix used in the identification.

Validation GUI
The Algorithm menu for the val( ) tool contains two options:

• Defaults—Selecting this option brings up a popup in which you can 
select the minimum and maximum frequencies and the number of 
points to be used in computing frequency responses, as well as the 
number of covariance and impulse lags.

• Recompute—This option and the associated keyboard accelerator 
have the identical function as the RECOMPUTE button beneath the 
plot area.



Appendix C Tool-Specific GUI Features

Xmath Interactive System Identification Module, Part 1 C-8 ni.com

Three VarEdits appear beneath the plotting area of the interactive tool:

• System Name—Allows you to enter the name of a system model to be 
validated. Data is assumed to be in the current partition; specify the 
variable name in partitionName.variableName form if you want 
to use a variable in another partition.

• Input Data—Allows you to enter the name of a variable containing 
the input data with which to validate the current system model. Data is 
assumed to be in the current partition; specify the variable name in 
partitionName.variableName form if you want to use a variable 
in another partition.

• Output Data—Allows you to enter the name of a variable containing 
the output data with which to validate the current system model. Data 
is assumed to be in the current partition; specify the variable name in 
partitionName.variableName form if you want to use a variable in 
another partition.



© National Instruments Corporation D-1 Xmath Interactive System Identification Module, Part 1

D
Bibliography

[AD87] J. L. Adcock: Curve Fitter for Pole-Zero Analysis, 
Hewlett-Packard Journal, January 1987, p. 33.

[AKA] H. Akaike: Markovian representation of stochastic 
processes by canonical variables, SIAM J. Control, 
Vol. 13, No. 1, pp. 162–173, 1975.

[ALING] H. Aling: A Fast Least Squares Lattice Algorithm, Proc. 
IEEE-CDC Tucson, 1993, pp. 3709–3710.

[AndGev] B.D.O. Anderson, M. Gevers: Identifiability of linear 
stochastic systems operating under feedback, 
Automatica Vol. 18, No. 2, pp. 195–213, 1982.

[AndMo] B.D.O. Anderson, J.B. Moore: Optimal Filtering. 
ISBN 0-13-638122-7, Prentice Hall, New Jersey, 1979.

[ARUN] K.S. Arun, S.Y. Kung: Balanced Approximation of 
Stochastic Systems. SIAM Matrix Analysis and 
Applications, 11, 1990, pp. 42–68.

[BIER] G.J. Bierman: Factorization methods for discrete 
sequential estimation, Academic Press, New York.

[DAV] Davies, W.D.T., Generation and properties of 
maximum-length sequences, parts 1–3, Control, 
June, July, and August 1966.

[Enns] Enns, Dale: Model Reduction for Control System Design, 
A Report to NASA Ames-Dryden Flight Research 
Facility. Stanford Electronics Laboratories, Dept. 
of Electrical Engineering, Stanford University, 
Stanford, CA, 1984.

[GMW] Gill, P.E., Murray, W. and Wright, M.H. Practical 
Optimization, Academic Press Inc., N.Y., N.Y., 1981, 
pp. 105–115.



Appendix D Bibliography

Xmath Interactive System Identification Module, Part 1 D-2 ni.com

[GP] G.C. Goodwin, R.L. Payne: Dynamic system 
identification: Experiment design and data analysis, 
ISBN 0-12-289750-1, Academic Press, 1977.

[KAI] T. Kailath: Linear Systems, ISBN 0-536961-4, 
Prentice-Hall, 1980.

[LARI] W.E. Larimore: System identification, reduced order 
filtering and modelling via canonical variate analysis, 
Proc. ACC 1983, San Francisco, 1984.

[LARI2] W.E. Larimore: Canonical Variate Analysis in 
Identification, Filtering, and Adaptive Control. 29th 
IEEE Conference On Decision and Control, Honolulu, 
Hawaii, December 1990, pp. 596–604.

[LJU1] L. Ljung, T. Söderström: Theory and practice of 
recursive identification, ISBN 0-262-12095-X, 
MIT Press, 1983.

[LJU2] L. Ljung: System identification – theory for the user, 
ISBN 0-13-881640-9, Prentice-Hall, 1987.

[MOON] M. Moonen, B. De Moor, L. Vandenberghe, J. 
Vandewalle: On- and off-line identification of linear 
state-space models, Int. J. Control, 1989, Vol. 49, No. 1, 
pp. 219–232.

[MOOR] B. De Moor: Mathematical concepts and techniques for 
modelling of static and dynamic systems, Ph.D. thesis, 
Katholieke Universiteit Leuven, Belgium, UDC 519.17.

[PET] V. Peterka: A square root filter for real time multivariate 
regression, Kybernetika, Vol. 11, No. 1, pp. 53–67, 1975.

[POR] B. Porat, B. Friedlander, M. Morf: Square root 
covariance ladder algorithms, IEEE-AC, Vol. 27, No. 4, 
pp. 813–829, 1982.

[PRIES] M.B. Priestley: Spectral analysis and time series, 
ISBN 0-12-564922-3, Academic Press, 1981.

[Söd] T. Söderström, L. Ljung, I. Gustavsson: Identifiability 
conditions of linear multivariable systems operating 
under feedback, IEEE-AC Vol. 21, No. 6, pp. 837, 840, 
1976.



Appendix D Bibliography

© National Instruments Corporation D-3 Xmath Interactive System Identification Module, Part 1

[VODM1] P. Van Overschee, B. De Moor: Subspace Algorithms for 
the Identification of Combined Deterministic-Stochastic 
Systems. Automatica, Special Issue on Statistical 
Processing and Control, Vol. 30, No. 1, pp. 75–93.

[VODM2] P. Van Overschee, B. De Moor: Subspace Algorithms for 
the Stochastic Identification Problem. Automatica, 
Vol. 29, No. 3, pp. 649–660.

[WAH] B. Wahlberg, L. Ljung: Design variables for bias 
distribution in transfer function estimation, IEEE-AC, 
Vol. 31, No. 2, pp. 134–144, 1986.



© National Instruments Corporation E-1 Xmath Interactive System Identification Module, Part 1

E
Technical Support and 
Professional Services

Visit the following sections of the National Instruments Web site at 
ni.com for technical support and professional services:

• Support—Online technical support resources at ni.com/support 
include the following:

– Self-Help Resources—For immediate answers and solutions, 
visit the award-winning National Instruments Web site for 
software drivers and updates, a searchable KnowledgeBase, 
product manuals, step-by-step troubleshooting wizards, thousands 
of example programs, tutorials, application notes, instrument 
drivers, and so on.

– Free Technical Support—All registered users receive free Basic 
Service, which includes access to hundreds of Application 
Engineers worldwide in the NI Developer Exchange at 
ni.com/exchange. National Instruments Application Engineers 
make sure every question receives an answer.

• Training and Certification—Visit ni.com/training for 
self-paced training, eLearning virtual classrooms, interactive CDs, 
and Certification program information. You also can register for 
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house 
technical resources, or other project challenges, NI Alliance Program 
members can help. To learn more, call your local NI office or visit 
ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact 
your local office or NI corporate headquarters. Phone numbers for our 
worldwide offices are listed at the front of this manual. You also can visit 
the Worldwide Offices section of ni.com/niglobal to access the branch 
office Web sites, which provide up-to-date contact information, support 
phone numbers, email addresses, and current events.



© National Instruments Corporation I-1 Xmath Interactive System Identification Module, Part 1

Index

A
acronyms, 4-1
ARMA models, 2-6

state-space equivalents for, 2-6
storage efficiency, 2-7

ARMAX representation, 2-8
asymptotic stability, 2-7
auto regressive moving average models. 

See ARMA models
auto spectral density function, 3-7

positive definite status of, 3-8
autoregressive modeling, 4-57
average unwindowed covariance. 

See Blackman-Tukey averaging
averaging

autoregressive estimation, 3-7
correlation, 3-7
frequency domain, 3-7

B
backward polynomial innovations model, 2-8

list object, A-2
bandwidth, 4-16
basis, 3-20

default, for sst, 4-36
setting, C-6

batch least squares, 4-10
bias, 3-25

setting, C-6
Blackman window, 3-8
Blackman-Tukey averaging, 4-56
Box-Jenkins representation, 2-8

C
Chebyshev polynomials, 4-70
chirps, 4-76
closing an interactive tool, 4-9
coherence

function estimates, 4-52
obtaining with sdf, 4-56

combining data sets with LS, 4-21
confidence

intervals, 4-20
level, 4-30

conventions used in the manual, iv
cost function, 3-26
cross covariance function, 3-6
cross spectral density function, 3-6
cross validation, 4-75, C-3
cross-correlation of the input and output 

prediction error, 4-7

D
data

filtering, 4-16
samples, 4-11
value indicator box, 4-9
viewing, 4-10
windowing, 4-56, C-5

diagnostic tools (NI resources), E-1
discrete Fourier transformation, 3-6
documentation

conventions used in the manual, iv
NI resources, E-1

drivers (NI resources), E-1



Index

Xmath Interactive System Identification Module, Part 1 I-2 ni.com

E
empirical transfer function estimate. See 

ETFE
error norms, C-1, C-3
ETFE, 3-9

inverse Fourier transfer function to get 
impulse response, 4-61

open loop reference signal same as 
input, C-5

etfe
function, 4-58
interactive tool, 4-59

examples (NI resources), E-1

F
feedthrough term, C-3
File menu, 4-6
Fourier transform, 2-2
frequency domain model error estimate, 2-14
frequency response, 4-7, 4-70

data, 3-13
error bound, 4-7
magnitude, 4-21
model error, 4-20
of a general identification system, 4-21
uncertainty, 4-14

frequency weighted least squares, 4-66, 4-68, 
C-1

fwls interactive tool, 4-66

G
Gaussian noise, 4-3, 4-78
generalized instrumental variables, 3-5, 4-50
giv

function, 4-50
interactive tool, C-3

GIV method, 3-5

graphical user interface (GUI), 4-3
graphics utilities, 4-9
standard interface for interactive 

tools, 4-4
structure and concept, 4-4

graphics utilities, 4-9
GuiPlot option, 4-8

H
Hamming window, 3-7
Hankel matrix, 4-65

block, 3-19
with sds, C-7

Hankel singular values, from irea, 4-64
Hanning window, 3-7
help, technical support, E-1
Hessian matrix, 3-26
hidden partition. See partition, hidden
high order models, 2-7, 4-23
highpass filtering, 2-3

I
idfreq, 4-21
impulse response, 4-7, 4-61, C-4

coefficients, 3-10
data identification, 4-63
noise corrupted data, 3-12

innovations model, 2-7
asymptotic stability, 2-7
backward polynomial, 2-8

input sequence design, 4-76
input/output data viewing, 4-7
instrument drivers (NI resources), E-1
interactive session, restart, 4-9
interactive tools, 4-3

closing, 4-9
cross validation with, 4-20
vector input for model orders, 4-14

intermediate results, 2-14



Index

© National Instruments Corporation I-3 Xmath Interactive System Identification Module, Part 1

irea
interactive tool, 4-63
with least squares, 4-65

J
Jacobian, 3-26

from maxlike, 4-48

K
key bindings, 4-6
KnowledgeBase, E-1
Kung/Kailath algorithm, 3-12

L
large problems, 4-23
lasso, 4-10
lattice

algorithm, 3-4
for large problems, 4-23

square root, 3-4
least squares

frequency domain, 3-13, 4-66
frequency weighted, 4-66
high-order for irea, 4-65
prediction error norm validation, 4-74
solution, 3-2, 4-22
with lattice algorithm, 3-4
with scalar denominator, 3-4, 4-22

linearization, 2-2
list object

backward polynomial innovations 
model, A-2

LS square root, A-4
local minima, 3-28
LS, 3-2

square root, 3-3, 4-11
list object, A-4

ls, 4-10, 4-11
algorithm options, 4-12
combining data sets, 4-21
interactive tool for, 4-11
lattice algorithm, 4-23
SVD-based solution, C-2

ls2unc, 4-20
lsjoin, 4-21

M
magnifying glass, 4-9
Markov parameters, 3-10
MATRIXx Help, 1-4
maximum likelihood, 4-47
maxlike, 4-47
menus

File, 4-6
Plot, 4-8

model
error, 4-14
frequency response, 4-20
reduction, 3-10

irea example, 4-65
scaling, 3-13
validation, 4-76

structure, selecting, 2-9
uncertainty estimates, 4-20

mtxplt, 4-10

N
narrow-band disturbance removal, 2-3
National Instruments support and 

services, E-1
nomenclature, 1-3
nonstationary signal, 4-54
number of points in each window, C-5



Index

Xmath Interactive System Identification Module, Part 1 I-4 ni.com

O
observability matrix, 3-20
open-loop, for ETFE, C-5
order selection, 4-18
outliers, 2-3
output error models, 2-9
overmodeling, 4-34

P
parameter variance, 4-14
partition, hidden, 4-4

_etfe_gui, 4-59
_irea_gui, 4-64
_sst_gui, 4-39
named _routineName_gui, 4-4

Plot menu, 4-8
plots

covariance of prediction error, 4-7
cross-correlation of the input and the 

output prediction error, 4-7
data viewing features, 4-10
error bounds, 4-7
error norms, C-1
frequency response, 4-7
impulse response, 4-7
input/output data, 4-7
mtxplt, 4-10
poles and transmission zeros, 4-7
predicted output, 4-7
prediction error, 4-7
SDF prediction errors, C-1
singular values bar plot, C-1
zooming, 4-10

poles, 2-9
pole-zero plot generation, 4-7, 4-34
polynomial fit, 2-2
postfiltering, 2-4
postsampling, 2-4
power distribution, 3-7

power spectral density. See spectral density 
function

prbs, 4-77
predicted output, viewing, 4-7
prediction error, 4-30

algorithms, 2-7
characteristics, 4-18
correlation for closed and open-loop, 4-75
covariance, 4-7
criteria, 2-9
methods, 3-15
plots, 4-7
spectral density function of, 4-13
variance matrix

plot diagonal terms, C-1
whiteness, 4-75

principal angles, 3-21, 4-29, 4-36
programming examples (NI resources), E-1
pseudo-random binary sequence, 4-77

bandwidth of a signal, 4-78

Q
quadratic suboptimization, 3-26

R
RECOMPUTE button, 4-8, C-2
rectangular tapering, 3-8
redundant parameters, 3-28
restart interactive session, 4-9

S
save

current data, 4-9
current model, 4-9

scalar denominator, C-2
scaling, 2-3

sensitivity, 3-20



Index

© National Instruments Corporation I-5 Xmath Interactive System Identification Module, Part 1

SDF, 3-6
implementation, 3-8

sdf function, 4-52
sds

function, 3-18
scaling sensitivity, 3-20

interactive tool, 4-24
SDS method, 3-18
signal analysis, 4-52, 4-73
signal conditioning, consequences, 4-60
signal-to-noise ratio, 4-76
sine sweeps, 4-76
singular value decomposition, 3-3, 4-22
singular values, 3-21, 4-22, C-1
sliders, 4-4
software (NI resources), E-1
spectral density function

computation and coherence, 4-73
estimation, 3-6
for ETFE, computation methods, C-4
number of frequency points used, 4-57
prediction errors, C-1

spline, 2-3
square root, 3-2, 4-11

cross validation, 4-18
identifying a lower-order model, 4-11
lattice, 3-4

square root object, 4-11
from fwls, 4-67
from sds, 4-26
from sst, storing, 4-39

sst, 3-23, 4-36
standard interface, 4-3
state-space model

discrete-time form, 2-5
equivalents for ARMA models, 2-6

state-space system
asymptotically biased determination, 3-21
biased determination, 3-22
determination for sst, 3-25
unbiased determination, 3-21

stochastic systems, subspace identification 
of, 3-23

subplot viewing features, 4-10
subspace identification, 3-17

basis, 4-36
bias, 4-36
deterministic stochastic systems, 4-24
stochastic systems, 3-23, 4-36

support, technical, E-1
SVD, 3-3
system bandwidth, 4-76
system identification, stochastic, 4-36

T
tapering, 2-3

Blackman window, 3-8
Hamming window, 3-7
Hanning window, 3-7
rectangular window, 3-8
triangular window, 3-8

technical support, E-1
tfid, 4-70
toggle buttons, 4-4
training and certification (NI resources), E-1
transfer function, 2-5
trend removal, 2-2
triangular window, 3-8
troubleshooting (NI resources), E-1

U
undermodeling, 4-27, 4-32, 4-33, 4-40



Index

Xmath Interactive System Identification Module, Part 1 I-6 ni.com

V
val, 4-74
validation, 2-14, 4-72

based on prediction errors, 4-19
data sets, specifying (example), 4-11
model reduction, 4-76
tool, 4-74

VarEdit widget, 4-4, C-2
viewing

input/output data, 4-7
predicted output, 4-7

W
Web resources, E-1
weight function, 3-14

weighting
ETFE interactively, C-4
frequency bands, 4-66

white noise, covariance function of, 3-8
widget

pull-down menus, 4-4
pushbuttons, 4-4

window
change number of points, C-5
defaults, modifying, C-1

Z
Zeiger-McEwen approximate realization 

algorithm, 3-12
zoom plot, 4-10


	Xmath Interactive System Identification Module, Part 1
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Conventions
	Contents
	Chapter 1 Introduction
	Using This Manual
	Document Organization
	How to Use This Manual
	Commonly-Used Nomenclature
	Related Publications
	MATRIXx Help
	Overview
	Function Categories
	Table 1-1. Nonparametric Identification Methods
	Table 1-2. Identification and Model Reduction
	Table 1-3. State Space Model Transformations
	Table 1-4. Polynomial Model Transformations
	Table 1-5. Validation Functions
	Table 1-6. Combining Separate Data Sets
	Table 1-7. Input Design
	Table 1-8. General Functions
	Table 1-9. Preprocessing Functions

	Graphical User Interface


	Chapter 2 Identification Process
	System Identification
	Loading and Preprocessing Data
	Choosing a Modeling and Identification Scheme
	Model Structures
	Incorporating Prior Knowledge
	Identification/Selection of ID Approach
	Using Intermediate Results

	Model Validation
	Identification Function Feature Summary
	Table 2-1. Identification Function Feature Summary


	Chapter 3 Identification Algorithms
	Least-Squares in the Time Domain
	Least Squares for ARX Models
	LS Square Root
	Singular Value-Based Solutions
	Least Squares with Scalar Denominator
	Fast Least Squares with a Lattice Algorithm

	Generalized Instrumental Variables
	Spectral Density Function Estimation
	Remarks on the Implementation of SDF

	Empirical Transfer Function Estimation
	Identification from Impulse Response Data
	Remarks

	Least Squares-Frequency Domain
	Prediction Error Methods
	Estimation Algorithm
	Specialized Model Structures

	Subspace Identification Methods
	Figure 3-1. Least Squares versus Kalman Filter
	Combined Deterministic-Stochastic Systems
	Determining the Observability Matrix and the Order
	Dependent Scaling
	Independent Scaling
	Determining the State-Space System

	Biased State-Space System Determination Method
	Subspace Identification of Stochastic Systems
	Determining the Observability Matrix and the Order
	Determining the State-Space System for SST


	Maximum Likelihood Method

	Chapter 4 Tutorial
	Preparing to Use This Tutorial
	Tutorial Data
	Graphical User Interface
	Structure and Concept of the GUI
	General Features of ISID Interactive Tools
	Figure 4-1. Interactive Tools for ls
	Menus
	Modeling and Validation Selections

	Graphics Utilities for GUI Tools

	Least-Squares in the Time Domain
	Interactive LS Tool
	Figure 4-2. ls Error Variances
	Figure 4-3. 4th, 8th, and 12th Order Model Frequency Responses
	Figure 4-4. SDF Prediction Errors for Fourth-Order Model
	Figure 4-5. Eighth-Order Model Error Estimate
	Figure 4-6. Comparison of Eighth-Order LS Versus True Models

	Filtering
	Figure 4-7. Comparison of Fourth Order LS (Filtered Data) Versus True Models

	Square Root Based Cross Validation
	Model Uncertainty Estimates
	Combining Data Sets with lsjoin
	SVD-Based Solutions
	Least Squares with Scalar Denominator
	Lattice-Based Least Squares

	Subspace Identification of Deterministic-Stochastic Systems
	Figure 4-8. Subspace System Singular Values
	Figure 4-9. Comparison of Fourth-Order Model Frequency Response and True System Frequency Response
	Figure 4-10. Second-Order Model Versus True Model
	Figure 4-11. Principal Angles as Functions of Model Order
	Figure 4-12. Covariance Prediction Errors for Fourth-Order Innovations Model
	Figure 4-13. Prediction Error Covariance for the Fourth-Order Input-Output Model
	Figure 4-14. Cross-Correlation of Input and Prediction Errors for the Fourth-Order Model
	Figure 4-15. Cross-Correlation of Input and Prediction Errors for Second-Order Model
	Figure 4-16. Pole-Zero Plot for Fourth-Order Model
	Figure 4-17. Pole-Zero Plot for the Eighth-Order (Overmodeled) Model
	Table 4-1. Percentage Errors

	Subspace Identification of Stochastic Systems
	Figure 4-18. Principal Angles as a Function of Model Order
	Figure 4-19. Comparison of Third-Order Model Response and True Model Response
	Figure 4-20. Comparison of True and Model Covariance Sequences

	Prediction Error Method
	Model Structures
	Example
	Figure 4-21. Estimate versus True Order System


	Maximum Likelihood Method
	Figure 4-22. Frequency Response for Maxlike Model

	Generalized Instrumental Variables
	Figure 4-23. Prediction Error Variance Diagonal Terms as a Function of Model Order
	Figure 4-24. Frequency Magnitude Response for Second-Order Model Compared with the True System Response

	Signal Analysis
	Figure 4-25. SDF of u_prbs2
	Figure 4-26. Sine Sweep SDF Showing Frequency Suppression
	Figure 4-27. Sine Sweep SDF - Averaging Over SDFs with Overlap
	Figure 4-28. Coherence Narrow Band PRBS Data
	Figure 4-29. AR Based SDF Estimate

	Empirical Transfer Function Estimation
	Figure 4-30. etfe GUI Tool
	Figure 4-31. Coherence Estimate
	Figure 4-32. Weight Function
	Figure 4-33. Unweighted and Weighted Impulse Response Estimates

	Impulse Realization
	Figure 4-34. IREA - Hankel Singular Values
	Figure 4-35. Comparison of the Original Order (10) and Reduced-Order (4) Impulse Responses
	Figure 4-36. Comparison of Fourth Order Model and True Model Impulse Realizations

	Least Squares in the Frequency Domain
	Figure 4-37. FWLS Errors, Uniform Weight
	Figure 4-38. Weight Function
	Figure 4-39. Comparison of Second-Order Reduced Model Response and True Response

	SISO Transfer Function Identification from Frequency Response Data
	Figure 4-40. Comparison of Measured and tfid-Identified Response with Default Weighting

	Validation
	Innovations Models
	Computing Prediction Errors
	Signal Analysis
	Stochastic Properties of Innovations Models
	Model Uncertainty Estimates
	Least Squares Prediction Error Norms
	Pole/Zero Inspection
	Interactive Validation Tool
	Guidelines

	Input Design
	Figure 4-41. Sine Sweep
	Figure 4-42. PRBS


	Appendix A List Data Structures
	Table A-1. ARMA Systems
	Table A-2. Model Structure
	Figure A-1. Model Conversion
	Table A-3. ARMA Systems

	Appendix B Loading Data with the read( ) Function
	Appendix C Tool-Specific GUI Features
	Appendix D Bibliography
	Appendix E Technical Support and Professional Services
	Index
	A-D
	E-I
	J-N
	O-S
	T-U
	V-Z


